Advances in Calculus of Variations最新文献

筛选
英文 中文
A sub-Riemannian maximum modulus theorem 亚黎曼最大模定理
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-01 DOI: 10.1515/acv-2023-0066
Federico Buseghin, Nicolò Forcillo, Nicola Garofalo
{"title":"A sub-Riemannian maximum modulus theorem","authors":"Federico Buseghin, Nicolò Forcillo, Nicola Garofalo","doi":"10.1515/acv-2023-0066","DOIUrl":"https://doi.org/10.1515/acv-2023-0066","url":null,"abstract":"In this note we prove a sub-Riemannian maximum modulus theorem in a Carnot group. Using a nontrivial counterexample, we also show that such result is best possible, in the sense that in its statement one cannot replace the right-invariant horizontal gradient with the left-invariant one.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term 包含一阶项的p-拉普拉斯系统奇异解的对称性和单调性
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2023-11-29 DOI: 10.1515/acv-2023-0043
Stefano Biagi, Francesco Esposito, Luigi Montoro, Eugenio Vecchi
{"title":"Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term","authors":"Stefano Biagi, Francesco Esposito, Luigi Montoro, Eugenio Vecchi","doi":"10.1515/acv-2023-0043","DOIUrl":"https://doi.org/10.1515/acv-2023-0043","url":null,"abstract":"We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs driven by <jats:italic>p</jats:italic>-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is already new in the scalar case.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sobolev embeddings and distance functions Sobolev嵌入和距离函数
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2023-11-27 DOI: 10.1515/acv-2023-0011
Lorenzo Brasco, Francesca Prinari, Anna Chiara Zagati
{"title":"Sobolev embeddings and distance functions","authors":"Lorenzo Brasco, Francesca Prinari, Anna Chiara Zagati","doi":"10.1515/acv-2023-0011","DOIUrl":"https://doi.org/10.1515/acv-2023-0011","url":null,"abstract":"On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi mathvariant=\"script\">D</m:mi> <m:mn>0</m:mn> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0011_ineq_0001.png\" /> <jats:tex-math>mathcal{D}^{{1,p}}_{0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> into <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>q</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0011_ineq_0002.png\" /> <jats:tex-math>L^{q}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when 𝑝 is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when 𝑝 is less than or equal to the dimension), we construct counterexamples to this equivalence. In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the 𝑝-Laplacian with sub-homogeneous right-hand side, as the exponent 𝑝 diverges to ∞. The case of first eigenfunctions of the 𝑝-Laplacian is included, as well. As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets. We also give some new geometric estimates for generalized principal frequencies.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Minimizers of 3D anisotropic interaction energies 三维各向异性相互作用能量的最小化
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2023-11-22 DOI: 10.1515/acv-2022-0059
José Antonio Carrillo, Ruiwen Shu
{"title":"Minimizers of 3D anisotropic interaction energies","authors":"José Antonio Carrillo, Ruiwen Shu","doi":"10.1515/acv-2022-0059","DOIUrl":"https://doi.org/10.1515/acv-2022-0059","url":null,"abstract":"We study a large family of axisymmetric Riesz-type singular interaction potentials with anisotropy in three dimensions. We generalize some of the results of the recent work [J. A. Carrillo and R. Shu, Global minimizers of a large class of anisotropic attractive-repulsive interaction energies in 2D, <jats:italic>Comm. Pure Appl. Math.</jats:italic> (2023), 10.1002/cpa.22162] in two dimensions to the present setting. For potentials with linear interpolation convexity, their associated global energy minimizers are given by explicit formulas whose supports are ellipsoids. We show that, for less singular anisotropic Riesz potentials, the global minimizer may collapse into one or two-dimensional concentrated measures which minimize restricted isotropic Riesz interaction energies. Some partial aspects of these questions are also tackled in the intermediate range of singularities in which one-dimensional vertical collapse is not allowed. Collapse to lower-dimensional structures is proved at the critical value of the convexity but not necessarily to vertically or horizontally concentrated measures, leading to interesting open problems.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Discrete approximation of nonlocal-gradient energies 非局部梯度能量的离散逼近
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2023-11-19 DOI: 10.1515/acv-2023-0028
Andrea Braides, Andrea Causin, Margherita Solci
{"title":"Discrete approximation of nonlocal-gradient energies","authors":"Andrea Braides, Andrea Causin, Margherita Solci","doi":"10.1515/acv-2023-0028","DOIUrl":"https://doi.org/10.1515/acv-2023-0028","url":null,"abstract":"We study a discrete approximation of functionals depending on nonlocal gradients. The discretized functionals are proved to be coercive in classical Sobolev spaces. The key ingredient in the proof is a formulation in terms of circulant Toeplitz matrices.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sobolev contractivity of gradient flow maximal functions 梯度流极大函数的Sobolev收缩性
3区 数学
Advances in Calculus of Variations Pub Date : 2023-10-27 DOI: 10.1515/acv-2023-0026
Simon Bortz, Moritz Egert, Olli Saari
{"title":"Sobolev contractivity of gradient flow maximal functions","authors":"Simon Bortz, Moritz Egert, Olli Saari","doi":"10.1515/acv-2023-0026","DOIUrl":"https://doi.org/10.1515/acv-2023-0026","url":null,"abstract":"Abstract We prove that the energy dissipation property of gradient flows extends to semigroup maximal operators in various settings. In particular, we show that the vertical maximal function relative to the p -parabolic extension does not increase the p -norm of the gradient when <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>&gt;</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> {p&gt;2} . We also obtain analogous results in the setting of uniformly parabolic and elliptic equations with bounded, measurable, real and symmetric coefficients. These are the first regularity results for vertical maximal functions without convolution structure.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136233437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Relaxed many-body optimal transport and related asymptotics 松弛多体最优输运及其渐近性
3区 数学
Advances in Calculus of Variations Pub Date : 2023-10-27 DOI: 10.1515/acv-2022-0085
Ugo Bindini, Guy Bouchitté
{"title":"Relaxed many-body optimal transport and related asymptotics","authors":"Ugo Bindini, Guy Bouchitté","doi":"10.1515/acv-2022-0085","DOIUrl":"https://doi.org/10.1515/acv-2022-0085","url":null,"abstract":"Abstract Optimization problems on probability measures in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> {mathbb{R}^{d}} are considered where the cost functional involves multi-marginal optimal transport. In a model of N interacting particles, for example in Density Functional Theory, the interaction cost is repulsive and described by a two-point function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>-</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {c(x,y)=ell(lvert x-yrvert)} where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:msub> <m:mi>ℝ</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {ell:mathbb{R}_{+}to[0,infty]} is decreasing to zero at infinity. Due to a possible loss of mass at infinity, non-existence may occur and relaxing the initial problem over sub-probabilities becomes necessary. In this paper, we characterize the relaxed functional generalizing the results of [4] and present a duality method which allows to compute the Γ-limit as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> {Ntoinfty} under very general assumptions on the cost <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {ell(r)} . We show that this limit coincides with the convex hull of the so-called direct energy. Then we study the limit optimization problem when a continuous external potential is applied. Conditions are given with explicit examples under which minimizers are probabilities or have a mass <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi /> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {<1} . In a last part, we study the case of a small range interaction <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi>N</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136234353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Continuous differentiability of a weak solution to very singular elliptic equations involving anisotropic diffusivity 涉及各向异性扩散系数的极奇椭圆方程弱解的连续可微性
3区 数学
Advances in Calculus of Variations Pub Date : 2023-10-27 DOI: 10.1515/acv-2022-0072
Shuntaro Tsubouchi
{"title":"Continuous differentiability of a weak solution to very singular elliptic equations involving anisotropic diffusivity","authors":"Shuntaro Tsubouchi","doi":"10.1515/acv-2022-0072","DOIUrl":"https://doi.org/10.1515/acv-2022-0072","url":null,"abstract":"Abstract In this paper we consider a very singular elliptic equation that involves an anisotropic diffusion operator, including the one-Laplacian, and is perturbed by a p -Laplacian-type diffusion operator with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> {1<p<infty} . This equation seems analytically difficult to handle near a facet, the place where the gradient vanishes. Our main purpose is to prove that weak solutions are continuously differentiable even across the facet. Here it is of interest to know whether a gradient is continuous when it is truncated near a facet. To answer this affirmatively, we consider an approximation problem, and use standard methods including De Giorgi’s truncation and freezing coefficient methods.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136234058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Weierstrass extremal field theory for the fractional Laplacian 分数阶拉普拉斯函数的Weierstrass极值场论
3区 数学
Advances in Calculus of Variations Pub Date : 2023-10-27 DOI: 10.1515/acv-2022-0099
Xavier Cabré, Iñigo U. Erneta, Juan-Carlos Felipe-Navarro
{"title":"A Weierstrass extremal field theory for the fractional Laplacian","authors":"Xavier Cabré, Iñigo U. Erneta, Juan-Carlos Felipe-Navarro","doi":"10.1515/acv-2022-0099","DOIUrl":"https://doi.org/10.1515/acv-2022-0099","url":null,"abstract":"Abstract In this paper, we extend, for the first time, part of the Weierstrass extremal field theory in the Calculus of Variations to a nonlocal framework. Our model case is the energy functional for the fractional Laplacian (the Gagliardo–Sobolev seminorm), for which such a theory was still unknown. We build a null-Lagrangian and a calibration for nonlinear equations involving the fractional Laplacian in the presence of a field of extremals. Thus, our construction assumes the existence of a family of solutions to the Euler–Lagrange equation whose graphs produce a foliation. Then the minimality of each leaf in the foliation follows from the existence of the calibration. As an application, we show that monotone solutions to fractional semilinear equations are minimizers. In a forthcoming work, we generalize the theory to a wide class of nonlocal elliptic functionals and give an application to the viscosity theory.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136318493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Qu’est-ce qui vient après le fordisme ? 福特主义之后是什么?
3区 数学
Advances in Calculus of Variations Pub Date : 2023-10-12 DOI: 10.4000/variations.2345
Bob Jessop
{"title":"Qu’est-ce qui vient après le fordisme ?","authors":"Bob Jessop","doi":"10.4000/variations.2345","DOIUrl":"https://doi.org/10.4000/variations.2345","url":null,"abstract":"","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136014134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信