Continuous differentiability of a weak solution to very singular elliptic equations involving anisotropic diffusivity

IF 1.3 3区 数学 Q1 MATHEMATICS
Shuntaro Tsubouchi
{"title":"Continuous differentiability of a weak solution to very singular elliptic equations involving anisotropic diffusivity","authors":"Shuntaro Tsubouchi","doi":"10.1515/acv-2022-0072","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we consider a very singular elliptic equation that involves an anisotropic diffusion operator, including the one-Laplacian, and is perturbed by a p -Laplacian-type diffusion operator with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> {1<p<\\infty} . This equation seems analytically difficult to handle near a facet, the place where the gradient vanishes. Our main purpose is to prove that weak solutions are continuously differentiable even across the facet. Here it is of interest to know whether a gradient is continuous when it is truncated near a facet. To answer this affirmatively, we consider an approximation problem, and use standard methods including De Giorgi’s truncation and freezing coefficient methods.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"79 7","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/acv-2022-0072","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper we consider a very singular elliptic equation that involves an anisotropic diffusion operator, including the one-Laplacian, and is perturbed by a p -Laplacian-type diffusion operator with 1 < p < {1
涉及各向异性扩散系数的极奇椭圆方程弱解的连续可微性
摘要本文考虑了一类极奇异椭圆方程,该方程包含一个各向异性扩散算子,包括一个拉普拉斯算子,并被一个带1 &lt的p -拉普拉斯型扩散算子扰动;P &lt;∞{1&lt;p&lt;\infty}。这个方程在一个面附近,也就是梯度消失的地方,似乎很难解析处理。我们的主要目的是证明弱解即使在面上也是连续可微的。在这里,当一个梯度在一个面附近被截断时,它是否连续是有意义的。为了肯定地回答这个问题,我们考虑一个近似问题,并使用标准方法,包括德乔吉的截断和冻结系数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信