{"title":"三维各向异性相互作用能量的最小化","authors":"José Antonio Carrillo, Ruiwen Shu","doi":"10.1515/acv-2022-0059","DOIUrl":null,"url":null,"abstract":"We study a large family of axisymmetric Riesz-type singular interaction potentials with anisotropy in three dimensions. We generalize some of the results of the recent work [J. A. Carrillo and R. Shu, Global minimizers of a large class of anisotropic attractive-repulsive interaction energies in 2D, <jats:italic>Comm. Pure Appl. Math.</jats:italic> (2023), 10.1002/cpa.22162] in two dimensions to the present setting. For potentials with linear interpolation convexity, their associated global energy minimizers are given by explicit formulas whose supports are ellipsoids. We show that, for less singular anisotropic Riesz potentials, the global minimizer may collapse into one or two-dimensional concentrated measures which minimize restricted isotropic Riesz interaction energies. Some partial aspects of these questions are also tackled in the intermediate range of singularities in which one-dimensional vertical collapse is not allowed. Collapse to lower-dimensional structures is proved at the critical value of the convexity but not necessarily to vertically or horizontally concentrated measures, leading to interesting open problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Minimizers of 3D anisotropic interaction energies\",\"authors\":\"José Antonio Carrillo, Ruiwen Shu\",\"doi\":\"10.1515/acv-2022-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a large family of axisymmetric Riesz-type singular interaction potentials with anisotropy in three dimensions. We generalize some of the results of the recent work [J. A. Carrillo and R. Shu, Global minimizers of a large class of anisotropic attractive-repulsive interaction energies in 2D, <jats:italic>Comm. Pure Appl. Math.</jats:italic> (2023), 10.1002/cpa.22162] in two dimensions to the present setting. For potentials with linear interpolation convexity, their associated global energy minimizers are given by explicit formulas whose supports are ellipsoids. We show that, for less singular anisotropic Riesz potentials, the global minimizer may collapse into one or two-dimensional concentrated measures which minimize restricted isotropic Riesz interaction energies. Some partial aspects of these questions are also tackled in the intermediate range of singularities in which one-dimensional vertical collapse is not allowed. Collapse to lower-dimensional structures is proved at the critical value of the convexity but not necessarily to vertically or horizontally concentrated measures, leading to interesting open problems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0059\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0059","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We study a large family of axisymmetric Riesz-type singular interaction potentials with anisotropy in three dimensions. We generalize some of the results of the recent work [J. A. Carrillo and R. Shu, Global minimizers of a large class of anisotropic attractive-repulsive interaction energies in 2D, Comm. Pure Appl. Math. (2023), 10.1002/cpa.22162] in two dimensions to the present setting. For potentials with linear interpolation convexity, their associated global energy minimizers are given by explicit formulas whose supports are ellipsoids. We show that, for less singular anisotropic Riesz potentials, the global minimizer may collapse into one or two-dimensional concentrated measures which minimize restricted isotropic Riesz interaction energies. Some partial aspects of these questions are also tackled in the intermediate range of singularities in which one-dimensional vertical collapse is not allowed. Collapse to lower-dimensional structures is proved at the critical value of the convexity but not necessarily to vertically or horizontally concentrated measures, leading to interesting open problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.