Relaxed many-body optimal transport and related asymptotics

IF 1.3 3区 数学 Q1 MATHEMATICS
Ugo Bindini, Guy Bouchitté
{"title":"Relaxed many-body optimal transport and related asymptotics","authors":"Ugo Bindini, Guy Bouchitté","doi":"10.1515/acv-2022-0085","DOIUrl":null,"url":null,"abstract":"Abstract Optimization problems on probability measures in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> {\\mathbb{R}^{d}} are considered where the cost functional involves multi-marginal optimal transport. In a model of N interacting particles, for example in Density Functional Theory, the interaction cost is repulsive and described by a two-point function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>-</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {c(x,y)=\\ell(\\lvert x-y\\rvert)} where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:msub> <m:mi>ℝ</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {\\ell:\\mathbb{R}_{+}\\to[0,\\infty]} is decreasing to zero at infinity. Due to a possible loss of mass at infinity, non-existence may occur and relaxing the initial problem over sub-probabilities becomes necessary. In this paper, we characterize the relaxed functional generalizing the results of [4] and present a duality method which allows to compute the Γ-limit as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> {N\\to\\infty} under very general assumptions on the cost <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\ell(r)} . We show that this limit coincides with the convex hull of the so-called direct energy. Then we study the limit optimization problem when a continuous external potential is applied. Conditions are given with explicit examples under which minimizers are probabilities or have a mass <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi /> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {<1} . In a last part, we study the case of a small range interaction <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi>N</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>r</m:mi> <m:mo>/</m:mo> <m:mi>ε</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {\\ell_{N}(r)=\\ell(r/\\varepsilon)} ( <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ε</m:mi> <m:mo>≪</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {\\varepsilon\\ll 1} ) and we show how the duality approach can also be used to determine the limit energy as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ε</m:mi> <m:mo>→</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> {\\varepsilon\\to 0} of a very large number <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>N</m:mi> <m:mi>ε</m:mi> </m:msub> </m:math> {N_{\\varepsilon}} of particles.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"16 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/acv-2022-0085","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Optimization problems on probability measures in d {\mathbb{R}^{d}} are considered where the cost functional involves multi-marginal optimal transport. In a model of N interacting particles, for example in Density Functional Theory, the interaction cost is repulsive and described by a two-point function c ( x , y ) = ( | x - y | ) {c(x,y)=\ell(\lvert x-y\rvert)} where : + [ 0 , ] {\ell:\mathbb{R}_{+}\to[0,\infty]} is decreasing to zero at infinity. Due to a possible loss of mass at infinity, non-existence may occur and relaxing the initial problem over sub-probabilities becomes necessary. In this paper, we characterize the relaxed functional generalizing the results of [4] and present a duality method which allows to compute the Γ-limit as N {N\to\infty} under very general assumptions on the cost ( r ) {\ell(r)} . We show that this limit coincides with the convex hull of the so-called direct energy. Then we study the limit optimization problem when a continuous external potential is applied. Conditions are given with explicit examples under which minimizers are probabilities or have a mass < 1 {<1} . In a last part, we study the case of a small range interaction N ( r ) = ( r / ε ) {\ell_{N}(r)=\ell(r/\varepsilon)} ( ε 1 {\varepsilon\ll 1} ) and we show how the duality approach can also be used to determine the limit energy as ε 0 {\varepsilon\to 0} of a very large number N ε {N_{\varepsilon}} of particles.
松弛多体最优输运及其渐近性
摘要考虑了代价函数涉及多边际最优运输的概率测度的最优化问题({\mathbb{R} ^{d}})。在N个相互作用粒子的模型中,例如在密度泛函理论中,相互作用代价是排斥性的,并由两点函数c¹(x,y)= r¹(| x-y |) {c(x,y)=\ell (\lvert x-y \rvert)来描述,}其中,r: v +→[0,∞]{\ell: \mathbb{R} _{+}\to[0,\infty]}在无穷远处减小到零。由于在无穷远处可能会失去质量,因此可能会出现不存在现象,因此有必要将初始问题放宽到子概率上。在本文中,我们将[4]的结果推广到松弛泛函中,并给出了一种对偶方法,该方法允许在代价为r (r) {}{\ell}{N→∞N}{\to}{\infty}{。我们证明这个极限与所谓的直接能的凸包是一致的。然后研究了连续外势作用下的极限优化问题。用明确的例子给出了条件,在这些条件下,极小值是概率或具有质量&lt;1} &lt;在{最后一部分中,我们研究了一个小范围相互作用的情况,}即N¹(r)= r¹(r/ ε){\ell _N{(r)= }\ell (r/ \varepsilon) }(ε≪1{\varepsilon\ll 1),并且我们展示了如何利用对偶性方法来确定}大量N ε N_ {{\varepsilon}}{粒子的极限能量ε→0 }{\varepsilon}{}{}{\to} 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信