{"title":"涉及分数 p-Laplacian 的反应扩散方程全解的单调性","authors":"Qing Guo","doi":"10.1515/acv-2022-0109","DOIUrl":null,"url":null,"abstract":"We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional <jats:italic>p</jats:italic>-Laplacian by virtue of the sliding method. More precisely, we consider the following problem <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo></m:mo> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0094.png\" /> <jats:tex-math>\\left\\{\\begin{aligned} \\displaystyle{}\\frac{\\partial u}{\\partial t}(x,t)+(-% \\Delta)_{p}^{s}u(x,t)&\\displaystyle=f(t,u(x,t)),&\\hskip 10.0pt(x,t)&% \\displaystyle\\in\\Omega\\times\\mathbb{R},\\\\ \\displaystyle u(x,t)&\\displaystyle>0,&\\hskip 10.0pt(x,t)&\\displaystyle\\in% \\Omega\\times\\mathbb{R},\\\\ \\displaystyle u(x,t)&\\displaystyle=0,&\\hskip 10.0pt(x,t)&\\displaystyle\\in% \\Omega^{c}\\times\\mathbb{R},\\end{aligned}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0396.png\" /> <jats:tex-math>{s\\in(0,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0384.png\" /> <jats:tex-math>{p\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0183.png\" /> <jats:tex-math>{(-\\Delta)_{p}^{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the fractional <jats:italic>p</jats:italic>-Laplacian, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0370.png\" /> <jats:tex-math>{f(t,u)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some continuous function, the domain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0254.png\" /> <jats:tex-math>{\\Omega\\subset\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is unbounded and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0256.png\" /> <jats:tex-math>{\\Omega^{c}=\\mathbb{R}^{n}\\setminus\\Omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Firstly, we establish a maximum principle involving the parabolic <jats:italic>p</jats:italic>-Laplacian operator. Then, under certain conditions of <jats:italic>f</jats:italic>, we prove the asymptotic behavior of solutions far away from the boundary uniformly in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0398.png\" /> <jats:tex-math>{t\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional <jats:italic>p</jats:italic>-Laplacian equations before.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"4 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian\",\"authors\":\"Qing Guo\",\"doi\":\"10.1515/acv-2022-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional <jats:italic>p</jats:italic>-Laplacian by virtue of the sliding method. More precisely, we consider the following problem <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\\\"0pt\\\" displaystyle=\\\"true\\\" rowspacing=\\\"0pt\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo></m:mo> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0094.png\\\" /> <jats:tex-math>\\\\left\\\\{\\\\begin{aligned} \\\\displaystyle{}\\\\frac{\\\\partial u}{\\\\partial t}(x,t)+(-% \\\\Delta)_{p}^{s}u(x,t)&\\\\displaystyle=f(t,u(x,t)),&\\\\hskip 10.0pt(x,t)&% \\\\displaystyle\\\\in\\\\Omega\\\\times\\\\mathbb{R},\\\\\\\\ \\\\displaystyle u(x,t)&\\\\displaystyle>0,&\\\\hskip 10.0pt(x,t)&\\\\displaystyle\\\\in% \\\\Omega\\\\times\\\\mathbb{R},\\\\\\\\ \\\\displaystyle u(x,t)&\\\\displaystyle=0,&\\\\hskip 10.0pt(x,t)&\\\\displaystyle\\\\in% \\\\Omega^{c}\\\\times\\\\mathbb{R},\\\\end{aligned}\\\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0396.png\\\" /> <jats:tex-math>{s\\\\in(0,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0384.png\\\" /> <jats:tex-math>{p\\\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0183.png\\\" /> <jats:tex-math>{(-\\\\Delta)_{p}^{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the fractional <jats:italic>p</jats:italic>-Laplacian, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0370.png\\\" /> <jats:tex-math>{f(t,u)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some continuous function, the domain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0254.png\\\" /> <jats:tex-math>{\\\\Omega\\\\subset\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is unbounded and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0256.png\\\" /> <jats:tex-math>{\\\\Omega^{c}=\\\\mathbb{R}^{n}\\\\setminus\\\\Omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Firstly, we establish a maximum principle involving the parabolic <jats:italic>p</jats:italic>-Laplacian operator. Then, under certain conditions of <jats:italic>f</jats:italic>, we prove the asymptotic behavior of solutions far away from the boundary uniformly in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0398.png\\\" /> <jats:tex-math>{t\\\\in\\\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional <jats:italic>p</jats:italic>-Laplacian equations before.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0109\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们利用滑动法得到了一些涉及分数 p-Laplacian 的反应扩散方程全正解的一维对称性和单调性。更确切地说,我们考虑以下问题 { ∂ u ∂ t ( x , t ) + ( - Δ ) p s u ( x , t ) = f ( t , u ( x , t ) ) , ( x , t ) ∈ Ω × ℝ , u ( x , t ) > 0 , ( x , t ) ∈ Ω × ℝ , u ( x , t ) = 0 , ( x , t ) ∈ Ω c × ℝ , \left\{begin{aligned}\displaystyle{}frac{partial u}{partial t}(x,t)+(-% \Delta)_{p}^{s}u(x,t)&\displaystyle=f(t,u(x,t)),&\hskip 10.0pt(x,t)&%\displaystyle\in\Omega\times\mathbb{R},\\displaystyle u(x,t)&\displaystyle>0,&\hskip 10.0pt(x,t)&\displaystylein% \Omega\times\mathbb{R},\displaystyle u(x,t)&\displaystyle=0,&\hskip 10.0pt(x,t)&\displaystylein% \Omega^{c}\times\mathbb{R},\end{aligned}\right. 其中 s∈ ( 0 , 1 ) {s\in(0,1)} , p≥ 2 {p\geq 2} , ( - Δ ) p s {(-\Delta)_{p}^{s}} 是分数 p-拉普拉奇函数,f ( t , u ) {f(t、u)} 是某个连续函数,域 Ω ⊂ n {\Omega\subset\mathbb{R}^{n} 是无界的,且 Ω c = ℝ n ∖ Ω {\Omega^{c}=\mathbb{R}^{n}\setminus\Omega} 。首先,我们建立一个涉及抛物线 p-Laplacian 算子的最大值原理。然后,在 f 的特定条件下,我们证明了 t∈ ℝ {t\in\mathbb{R}} 中均匀远离边界的解的渐近行为。 .最后,利用滑动方法推导出有界正全解的单调性和唯一性。据我们所知,之前还没有任何关于抛物分式 p-Laplacian 方程解的对称性和单调性的结果。
Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian
We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional p-Laplacian by virtue of the sliding method. More precisely, we consider the following problem {∂u∂t(x,t)+(-Δ)psu(x,t)=f(t,u(x,t)),(x,t)∈Ω×ℝ,u(x,t)>0,(x,t)∈Ω×ℝ,u(x,t)=0,(x,t)∈Ωc×ℝ,\left\{\begin{aligned} \displaystyle{}\frac{\partial u}{\partial t}(x,t)+(-% \Delta)_{p}^{s}u(x,t)&\displaystyle=f(t,u(x,t)),&\hskip 10.0pt(x,t)&% \displaystyle\in\Omega\times\mathbb{R},\\ \displaystyle u(x,t)&\displaystyle>0,&\hskip 10.0pt(x,t)&\displaystyle\in% \Omega\times\mathbb{R},\\ \displaystyle u(x,t)&\displaystyle=0,&\hskip 10.0pt(x,t)&\displaystyle\in% \Omega^{c}\times\mathbb{R},\end{aligned}\right. where s∈(0,1){s\in(0,1)}, p≥2{p\geq 2}, (-Δ)ps{(-\Delta)_{p}^{s}} is the fractional p-Laplacian, f(t,u){f(t,u)} is some continuous function, the domain Ω⊂ℝn{\Omega\subset\mathbb{R}^{n}} is unbounded and Ωc=ℝn∖Ω{\Omega^{c}=\mathbb{R}^{n}\setminus\Omega}. Firstly, we establish a maximum principle involving the parabolic p-Laplacian operator. Then, under certain conditions of f, we prove the asymptotic behavior of solutions far away from the boundary uniformly in t∈ℝ{t\in\mathbb{R}}. Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional p-Laplacian equations before.
期刊介绍:
Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.