{"title":"涉及分数 p-Laplacian 的反应扩散方程全解的单调性","authors":"Qing Guo","doi":"10.1515/acv-2022-0109","DOIUrl":null,"url":null,"abstract":"We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional <jats:italic>p</jats:italic>-Laplacian by virtue of the sliding method. More precisely, we consider the following problem <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo></m:mo> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0094.png\" /> <jats:tex-math>\\left\\{\\begin{aligned} \\displaystyle{}\\frac{\\partial u}{\\partial t}(x,t)+(-% \\Delta)_{p}^{s}u(x,t)&\\displaystyle=f(t,u(x,t)),&\\hskip 10.0pt(x,t)&% \\displaystyle\\in\\Omega\\times\\mathbb{R},\\\\ \\displaystyle u(x,t)&\\displaystyle>0,&\\hskip 10.0pt(x,t)&\\displaystyle\\in% \\Omega\\times\\mathbb{R},\\\\ \\displaystyle u(x,t)&\\displaystyle=0,&\\hskip 10.0pt(x,t)&\\displaystyle\\in% \\Omega^{c}\\times\\mathbb{R},\\end{aligned}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0396.png\" /> <jats:tex-math>{s\\in(0,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0384.png\" /> <jats:tex-math>{p\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0183.png\" /> <jats:tex-math>{(-\\Delta)_{p}^{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the fractional <jats:italic>p</jats:italic>-Laplacian, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0370.png\" /> <jats:tex-math>{f(t,u)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some continuous function, the domain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0254.png\" /> <jats:tex-math>{\\Omega\\subset\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is unbounded and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0256.png\" /> <jats:tex-math>{\\Omega^{c}=\\mathbb{R}^{n}\\setminus\\Omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Firstly, we establish a maximum principle involving the parabolic <jats:italic>p</jats:italic>-Laplacian operator. Then, under certain conditions of <jats:italic>f</jats:italic>, we prove the asymptotic behavior of solutions far away from the boundary uniformly in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0398.png\" /> <jats:tex-math>{t\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional <jats:italic>p</jats:italic>-Laplacian equations before.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian\",\"authors\":\"Qing Guo\",\"doi\":\"10.1515/acv-2022-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional <jats:italic>p</jats:italic>-Laplacian by virtue of the sliding method. More precisely, we consider the following problem <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\\\"0pt\\\" displaystyle=\\\"true\\\" rowspacing=\\\"0pt\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo></m:mo> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0094.png\\\" /> <jats:tex-math>\\\\left\\\\{\\\\begin{aligned} \\\\displaystyle{}\\\\frac{\\\\partial u}{\\\\partial t}(x,t)+(-% \\\\Delta)_{p}^{s}u(x,t)&\\\\displaystyle=f(t,u(x,t)),&\\\\hskip 10.0pt(x,t)&% \\\\displaystyle\\\\in\\\\Omega\\\\times\\\\mathbb{R},\\\\\\\\ \\\\displaystyle u(x,t)&\\\\displaystyle>0,&\\\\hskip 10.0pt(x,t)&\\\\displaystyle\\\\in% \\\\Omega\\\\times\\\\mathbb{R},\\\\\\\\ \\\\displaystyle u(x,t)&\\\\displaystyle=0,&\\\\hskip 10.0pt(x,t)&\\\\displaystyle\\\\in% \\\\Omega^{c}\\\\times\\\\mathbb{R},\\\\end{aligned}\\\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0396.png\\\" /> <jats:tex-math>{s\\\\in(0,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0384.png\\\" /> <jats:tex-math>{p\\\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0183.png\\\" /> <jats:tex-math>{(-\\\\Delta)_{p}^{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the fractional <jats:italic>p</jats:italic>-Laplacian, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0370.png\\\" /> <jats:tex-math>{f(t,u)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some continuous function, the domain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0254.png\\\" /> <jats:tex-math>{\\\\Omega\\\\subset\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is unbounded and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0256.png\\\" /> <jats:tex-math>{\\\\Omega^{c}=\\\\mathbb{R}^{n}\\\\setminus\\\\Omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Firstly, we establish a maximum principle involving the parabolic <jats:italic>p</jats:italic>-Laplacian operator. Then, under certain conditions of <jats:italic>f</jats:italic>, we prove the asymptotic behavior of solutions far away from the boundary uniformly in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0398.png\\\" /> <jats:tex-math>{t\\\\in\\\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional <jats:italic>p</jats:italic>-Laplacian equations before.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0109\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0109","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们利用滑动法得到了一些涉及分数 p-Laplacian 的反应扩散方程全正解的一维对称性和单调性。更确切地说,我们考虑以下问题 { ∂ u ∂ t ( x , t ) + ( - Δ ) p s u ( x , t ) = f ( t , u ( x , t ) ) , ( x , t ) ∈ Ω × ℝ , u ( x , t ) > 0 , ( x , t ) ∈ Ω × ℝ , u ( x , t ) = 0 , ( x , t ) ∈ Ω c × ℝ , \left\{begin{aligned}\displaystyle{}frac{partial u}{partial t}(x,t)+(-% \Delta)_{p}^{s}u(x,t)&\displaystyle=f(t,u(x,t)),&\hskip 10.0pt(x,t)&%\displaystyle\in\Omega\times\mathbb{R},\\displaystyle u(x,t)&\displaystyle>0,&\hskip 10.0pt(x,t)&\displaystylein% \Omega\times\mathbb{R},\displaystyle u(x,t)&\displaystyle=0,&\hskip 10.0pt(x,t)&\displaystylein% \Omega^{c}\times\mathbb{R},\end{aligned}\right. 其中 s∈ ( 0 , 1 ) {s\in(0,1)} , p≥ 2 {p\geq 2} , ( - Δ ) p s {(-\Delta)_{p}^{s}} 是分数 p-拉普拉奇函数,f ( t , u ) {f(t、u)} 是某个连续函数,域 Ω ⊂ n {\Omega\subset\mathbb{R}^{n} 是无界的,且 Ω c = ℝ n ∖ Ω {\Omega^{c}=\mathbb{R}^{n}\setminus\Omega} 。首先,我们建立一个涉及抛物线 p-Laplacian 算子的最大值原理。然后,在 f 的特定条件下,我们证明了 t∈ ℝ {t\in\mathbb{R}} 中均匀远离边界的解的渐近行为。 .最后,利用滑动方法推导出有界正全解的单调性和唯一性。据我们所知,之前还没有任何关于抛物分式 p-Laplacian 方程解的对称性和单调性的结果。
Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian
We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional p-Laplacian by virtue of the sliding method. More precisely, we consider the following problem {∂u∂t(x,t)+(-Δ)psu(x,t)=f(t,u(x,t)),(x,t)∈Ω×ℝ,u(x,t)>0,(x,t)∈Ω×ℝ,u(x,t)=0,(x,t)∈Ωc×ℝ,\left\{\begin{aligned} \displaystyle{}\frac{\partial u}{\partial t}(x,t)+(-% \Delta)_{p}^{s}u(x,t)&\displaystyle=f(t,u(x,t)),&\hskip 10.0pt(x,t)&% \displaystyle\in\Omega\times\mathbb{R},\\ \displaystyle u(x,t)&\displaystyle>0,&\hskip 10.0pt(x,t)&\displaystyle\in% \Omega\times\mathbb{R},\\ \displaystyle u(x,t)&\displaystyle=0,&\hskip 10.0pt(x,t)&\displaystyle\in% \Omega^{c}\times\mathbb{R},\end{aligned}\right. where s∈(0,1){s\in(0,1)}, p≥2{p\geq 2}, (-Δ)ps{(-\Delta)_{p}^{s}} is the fractional p-Laplacian, f(t,u){f(t,u)} is some continuous function, the domain Ω⊂ℝn{\Omega\subset\mathbb{R}^{n}} is unbounded and Ωc=ℝn∖Ω{\Omega^{c}=\mathbb{R}^{n}\setminus\Omega}. Firstly, we establish a maximum principle involving the parabolic p-Laplacian operator. Then, under certain conditions of f, we prove the asymptotic behavior of solutions far away from the boundary uniformly in t∈ℝ{t\in\mathbb{R}}. Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional p-Laplacian equations before.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.