涉及分数 p-Laplacian 的反应扩散方程全解的单调性

IF 1.3 3区 数学 Q1 MATHEMATICS
Qing Guo
{"title":"涉及分数 p-Laplacian 的反应扩散方程全解的单调性","authors":"Qing Guo","doi":"10.1515/acv-2022-0109","DOIUrl":null,"url":null,"abstract":"We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional <jats:italic>p</jats:italic>-Laplacian by virtue of the sliding method. More precisely, we consider the following problem <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mo>∂</m:mo> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>∂</m:mo> <m:mo>⁡</m:mo> <m:mi>t</m:mi> </m:mrow> </m:mfrac> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo lspace=\"12.5pt\" stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0094.png\" /> <jats:tex-math>\\left\\{\\begin{aligned} \\displaystyle{}\\frac{\\partial u}{\\partial t}(x,t)+(-% \\Delta)_{p}^{s}u(x,t)&amp;\\displaystyle=f(t,u(x,t)),&amp;\\hskip 10.0pt(x,t)&amp;% \\displaystyle\\in\\Omega\\times\\mathbb{R},\\\\ \\displaystyle u(x,t)&amp;\\displaystyle&gt;0,&amp;\\hskip 10.0pt(x,t)&amp;\\displaystyle\\in% \\Omega\\times\\mathbb{R},\\\\ \\displaystyle u(x,t)&amp;\\displaystyle=0,&amp;\\hskip 10.0pt(x,t)&amp;\\displaystyle\\in% \\Omega^{c}\\times\\mathbb{R},\\end{aligned}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0396.png\" /> <jats:tex-math>{s\\in(0,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0384.png\" /> <jats:tex-math>{p\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0183.png\" /> <jats:tex-math>{(-\\Delta)_{p}^{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the fractional <jats:italic>p</jats:italic>-Laplacian, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0370.png\" /> <jats:tex-math>{f(t,u)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some continuous function, the domain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0254.png\" /> <jats:tex-math>{\\Omega\\subset\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is unbounded and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0256.png\" /> <jats:tex-math>{\\Omega^{c}=\\mathbb{R}^{n}\\setminus\\Omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Firstly, we establish a maximum principle involving the parabolic <jats:italic>p</jats:italic>-Laplacian operator. Then, under certain conditions of <jats:italic>f</jats:italic>, we prove the asymptotic behavior of solutions far away from the boundary uniformly in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0109_eq_0398.png\" /> <jats:tex-math>{t\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional <jats:italic>p</jats:italic>-Laplacian equations before.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"4 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian\",\"authors\":\"Qing Guo\",\"doi\":\"10.1515/acv-2022-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional <jats:italic>p</jats:italic>-Laplacian by virtue of the sliding method. More precisely, we consider the following problem <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\\\"0pt\\\" displaystyle=\\\"true\\\" rowspacing=\\\"0pt\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mo>∂</m:mo> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>∂</m:mo> <m:mo>⁡</m:mo> <m:mi>t</m:mi> </m:mrow> </m:mfrac> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mo lspace=\\\"12.5pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0094.png\\\" /> <jats:tex-math>\\\\left\\\\{\\\\begin{aligned} \\\\displaystyle{}\\\\frac{\\\\partial u}{\\\\partial t}(x,t)+(-% \\\\Delta)_{p}^{s}u(x,t)&amp;\\\\displaystyle=f(t,u(x,t)),&amp;\\\\hskip 10.0pt(x,t)&amp;% \\\\displaystyle\\\\in\\\\Omega\\\\times\\\\mathbb{R},\\\\\\\\ \\\\displaystyle u(x,t)&amp;\\\\displaystyle&gt;0,&amp;\\\\hskip 10.0pt(x,t)&amp;\\\\displaystyle\\\\in% \\\\Omega\\\\times\\\\mathbb{R},\\\\\\\\ \\\\displaystyle u(x,t)&amp;\\\\displaystyle=0,&amp;\\\\hskip 10.0pt(x,t)&amp;\\\\displaystyle\\\\in% \\\\Omega^{c}\\\\times\\\\mathbb{R},\\\\end{aligned}\\\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0396.png\\\" /> <jats:tex-math>{s\\\\in(0,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0384.png\\\" /> <jats:tex-math>{p\\\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0183.png\\\" /> <jats:tex-math>{(-\\\\Delta)_{p}^{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the fractional <jats:italic>p</jats:italic>-Laplacian, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0370.png\\\" /> <jats:tex-math>{f(t,u)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some continuous function, the domain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0254.png\\\" /> <jats:tex-math>{\\\\Omega\\\\subset\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is unbounded and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mi>c</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0256.png\\\" /> <jats:tex-math>{\\\\Omega^{c}=\\\\mathbb{R}^{n}\\\\setminus\\\\Omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Firstly, we establish a maximum principle involving the parabolic <jats:italic>p</jats:italic>-Laplacian operator. Then, under certain conditions of <jats:italic>f</jats:italic>, we prove the asymptotic behavior of solutions far away from the boundary uniformly in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0109_eq_0398.png\\\" /> <jats:tex-math>{t\\\\in\\\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional <jats:italic>p</jats:italic>-Laplacian equations before.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0109\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用滑动法得到了一些涉及分数 p-Laplacian 的反应扩散方程全正解的一维对称性和单调性。更确切地说,我们考虑以下问题 { ∂ u ∂ t ( x , t ) + ( - Δ ) p s u ( x , t ) = f ( t , u ( x , t ) ) , ( x , t ) ∈ Ω × ℝ , u ( x , t ) > 0 , ( x , t ) ∈ Ω × ℝ , u ( x , t ) = 0 , ( x , t ) ∈ Ω c × ℝ , \left\{begin{aligned}\displaystyle{}frac{partial u}{partial t}(x,t)+(-% \Delta)_{p}^{s}u(x,t)&\displaystyle=f(t,u(x,t)),&\hskip 10.0pt(x,t)&%\displaystyle\in\Omega\times\mathbb{R},\\displaystyle u(x,t)&\displaystyle>0,&\hskip 10.0pt(x,t)&\displaystylein% \Omega\times\mathbb{R},\displaystyle u(x,t)&\displaystyle=0,&\hskip 10.0pt(x,t)&\displaystylein% \Omega^{c}\times\mathbb{R},\end{aligned}\right. 其中 s∈ ( 0 , 1 ) {s\in(0,1)} , p≥ 2 {p\geq 2} , ( - Δ ) p s {(-\Delta)_{p}^{s}} 是分数 p-拉普拉奇函数,f ( t , u ) {f(t、u)} 是某个连续函数,域 Ω ⊂ n {\Omega\subset\mathbb{R}^{n} 是无界的,且 Ω c = ℝ n ∖ Ω {\Omega^{c}=\mathbb{R}^{n}\setminus\Omega} 。首先,我们建立一个涉及抛物线 p-Laplacian 算子的最大值原理。然后,在 f 的特定条件下,我们证明了 t∈ ℝ {t\in\mathbb{R}} 中均匀远离边界的解的渐近行为。 .最后,利用滑动方法推导出有界正全解的单调性和唯一性。据我们所知,之前还没有任何关于抛物分式 p-Laplacian 方程解的对称性和单调性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian
We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional p-Laplacian by virtue of the sliding method. More precisely, we consider the following problem { u t ( x , t ) + ( - Δ ) p s u ( x , t ) = f ( t , u ( x , t ) ) , ( x , t ) Ω × , u ( x , t ) > 0 , ( x , t ) Ω × , u ( x , t ) = 0 , ( x , t ) Ω c × , \left\{\begin{aligned} \displaystyle{}\frac{\partial u}{\partial t}(x,t)+(-% \Delta)_{p}^{s}u(x,t)&\displaystyle=f(t,u(x,t)),&\hskip 10.0pt(x,t)&% \displaystyle\in\Omega\times\mathbb{R},\\ \displaystyle u(x,t)&\displaystyle>0,&\hskip 10.0pt(x,t)&\displaystyle\in% \Omega\times\mathbb{R},\\ \displaystyle u(x,t)&\displaystyle=0,&\hskip 10.0pt(x,t)&\displaystyle\in% \Omega^{c}\times\mathbb{R},\end{aligned}\right. where s ( 0 , 1 ) {s\in(0,1)} , p 2 {p\geq 2} , ( - Δ ) p s {(-\Delta)_{p}^{s}} is the fractional p-Laplacian, f ( t , u ) {f(t,u)} is some continuous function, the domain Ω n {\Omega\subset\mathbb{R}^{n}} is unbounded and Ω c = n Ω {\Omega^{c}=\mathbb{R}^{n}\setminus\Omega} . Firstly, we establish a maximum principle involving the parabolic p-Laplacian operator. Then, under certain conditions of f, we prove the asymptotic behavior of solutions far away from the boundary uniformly in t {t\in\mathbb{R}} . Finally, the sliding method is implemented to derive the monotonicity and uniqueness of the bounded positive entire solutions. To our best knowledge, there has not been any results on the symmetry and monotonicity properties of solutions to the parabolic fractional p-Laplacian equations before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信