{"title":"A variance-sensitive Gaussian concentration inequality","authors":"Nguyen Dung","doi":"10.1090/proc/16905","DOIUrl":"https://doi.org/10.1090/proc/16905","url":null,"abstract":"<p>In this note, we obtain a Gaussian concentration inequality for a class of non-Lipschitz functions. In the one-dimensional case, our results supplement those established by Paouris and Valettas [Ann. Probab. 46 (2018), pp. 1441–1454].</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elliptic equations with matrix weights and measurable nonlinearities on nonsmooth domains","authors":"Sun-Sig Byun, Yumi Cho, Ho-Sik Lee","doi":"10.1090/proc/16770","DOIUrl":"https://doi.org/10.1090/proc/16770","url":null,"abstract":"<p>We study general elliptic equations with singular/degenerate matrix weights and measurable nonlinearities on nonsmooth bounded domains to obtain a global Calderón-Zygmund type estimate under possibly minimal assumptions that the logarithm of the matrix weight has a small bounded mean oscillation (BMO) norm, the nonlinearity is allowed to be merely measurable in one variable but has a small BMO norm in the other variables and that the boundary of the domain is sufficiently flat in Reifenberg sense.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Almost complex torus manifolds - a problem of Petrie type","authors":"Donghoon Jang","doi":"10.1090/proc/16768","DOIUrl":"https://doi.org/10.1090/proc/16768","url":null,"abstract":"<p>The Petrie conjecture asserts that if a homotopy <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admits a non-trivial circle action, its Pontryagin class agrees with that of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Petrie proved this conjecture in the case where the manifold admits a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">T^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action. An almost complex torus manifold is a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional compact connected almost complex manifold equipped with an effective <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">T^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action that has fixed points. For an almost complex torus manifold, there exists a graph that encodes information about the weights at the fixed points. We prove that if a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional almost complex torus manifold <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On invariant generating sets for the cycle space","authors":"Ádám Timár","doi":"10.1090/proc/16910","DOIUrl":"https://doi.org/10.1090/proc/16910","url":null,"abstract":"<p>Consider a unimodular random graph, or just a finitely generated Cayley graph. When does its cycle space have an invariant random generating set of cycles such that every edge is contained in finitely many of the cycles? Generating the free Loop <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> model as a factor of iid is closely connected to having such a generating set for FK-Ising cluster. We show that geodesic cycles do not always form such a generating set, by showing for a parameter regime of the FK-Ising model on the lamplighter group the origin is contained in infinitely many geodesic cycles. This answers a question by Angel, Ray and Spinka. Then we take a look at how the property of having an invariant locally finite generating set for the cycle space is preserved by Bernoulli percolation, and apply it to the problem of factor of iid presentations of the free Loop <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> model.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved regularity for a Hessian-dependent functional","authors":"Vincenzo Bianca, Edgard Pimentel, José Urbano","doi":"10.1090/proc/16894","DOIUrl":"https://doi.org/10.1090/proc/16894","url":null,"abstract":"<p>We prove that minimizers of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript d\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm of the Hessian in the unit ball of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are locally of class <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 comma alpha\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{1,alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our findings extend previous results on Hessian-dependent functionals to the borderline case and resonate with the Hölder regularity theory available for elliptic equations in double-divergence form.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On word complexity and topological entropy of random substitution subshifts","authors":"Andrew Mitchell","doi":"10.1090/proc/16893","DOIUrl":"https://doi.org/10.1090/proc/16893","url":null,"abstract":"<p>We consider word complexity and topological entropy for random substitution subshifts. In contrast to previous work, we do not assume that the underlying random substitution is compatible. We show that the subshift of a primitive random substitution has zero topological entropy if and only if it can be obtained as the subshift of a deterministic substitution, answering in the affirmative an open question of Rust and Spindeler [Indag. Math. (N.S.) 29 (2018), pp. 1131–1155]. For constant length primitive random substitutions, we develop a systematic approach to calculating the topological entropy of the associated subshift. Further, we prove lower and upper bounds that hold even without primitivity. For subshifts of non-primitive random substitutions, we show that the complexity function can exhibit features not possible in the deterministic or primitive random setting, such as intermediate growth, and provide a partial classification of the permissible complexity functions for subshifts of constant length random substitutions.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Higher order embeddings via the basepoint-freeness threshold","authors":"Federico Caucci","doi":"10.1090/proc/16901","DOIUrl":"https://doi.org/10.1090/proc/16901","url":null,"abstract":"<p>In this note, we relate the basepoint-freeness threshold of a polarized abelian variety, introduced by Jiang and Pareschi, with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-jet very ampleness. Then, we derive several applications of this fact, including a criterion for the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-very ampleness of Kummer varieties.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Invariant connections on non-irreducible symmetric spaces with simple Lie group","authors":"Othmane Dani, Abdelhak Abouqateb, Saïd Benayadi","doi":"10.1090/proc/16903","DOIUrl":"https://doi.org/10.1090/proc/16903","url":null,"abstract":"<p>Consider a symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with simple Lie group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We demonstrate that when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not irreducible, it is necessarily even dimensional and noncompact. Furthermore, the subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also both noncompact and non-semisimple. Additionally, we establish that the only <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant connection on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the canonical connection. On the other hand, we show that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has an odd dimension, it must be irreducible, and the subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be semisimple. Finally, we present an explicit example, ","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kohler-Jobin meets Ehrhard: The sharp lower bound for the Gaussian principal frequency while the Gaussian torsional rigidity is fixed, via rearrangements","authors":"Orli Herscovici, Galyna Livshyts","doi":"10.1090/proc/16889","DOIUrl":"https://doi.org/10.1090/proc/16889","url":null,"abstract":"<p>In this note, we provide an adaptation of the Kohler-Jobin rearrangement technique to the setting of the Gauss space. As a result, we prove the Gaussian analogue of the Kohler-Jobin resolution of a conjecture of Pólya-Szegö: when the Gaussian torsional rigidity of a domain is fixed, the Gaussian principal frequency is minimized for the half-space. At the core of this rearrangement technique is the idea of considering a “modified” torsional rigidity, with respect to a given function, and rearranging its layers to half-spaces, in a particular way; the Rayleigh quotient decreases with this procedure.</p> <p>We emphasize that the analogy of the Gaussian case with the Lebesgue case is not to be expected here, as in addition to some soft symmetrization ideas, the argument relies on the properties of some special functions; the fact that this analogy does hold is somewhat of a miracle.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}