{"title":"On word complexity and topological entropy of random substitution subshifts","authors":"Andrew Mitchell","doi":"10.1090/proc/16893","DOIUrl":"https://doi.org/10.1090/proc/16893","url":null,"abstract":"<p>We consider word complexity and topological entropy for random substitution subshifts. In contrast to previous work, we do not assume that the underlying random substitution is compatible. We show that the subshift of a primitive random substitution has zero topological entropy if and only if it can be obtained as the subshift of a deterministic substitution, answering in the affirmative an open question of Rust and Spindeler [Indag. Math. (N.S.) 29 (2018), pp. 1131–1155]. For constant length primitive random substitutions, we develop a systematic approach to calculating the topological entropy of the associated subshift. Further, we prove lower and upper bounds that hold even without primitivity. For subshifts of non-primitive random substitutions, we show that the complexity function can exhibit features not possible in the deterministic or primitive random setting, such as intermediate growth, and provide a partial classification of the permissible complexity functions for subshifts of constant length random substitutions.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"56 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Higher order embeddings via the basepoint-freeness threshold","authors":"Federico Caucci","doi":"10.1090/proc/16901","DOIUrl":"https://doi.org/10.1090/proc/16901","url":null,"abstract":"<p>In this note, we relate the basepoint-freeness threshold of a polarized abelian variety, introduced by Jiang and Pareschi, with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-jet very ampleness. Then, we derive several applications of this fact, including a criterion for the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-very ampleness of Kummer varieties.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"39 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of the eigenvalues and the integral of the eigenfunctions of the Newtonian potential operator","authors":"Abdulaziz Alsenafi, Ahcene Ghandriche, Mourad Sini","doi":"10.1090/proc/16871","DOIUrl":"https://doi.org/10.1090/proc/16871","url":null,"abstract":"<p>We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega subset-of double-struck upper R Superscript d\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Omega subset mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 2 comma 3\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d=2,3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of the maximum radius of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:annotation encoding=\"application/x-tex\">Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the presence of small scaled and highly heterogeneous particles.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"68 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kohler-Jobin meets Ehrhard: The sharp lower bound for the Gaussian principal frequency while the Gaussian torsional rigidity is fixed, via rearrangements","authors":"Orli Herscovici, Galyna Livshyts","doi":"10.1090/proc/16889","DOIUrl":"https://doi.org/10.1090/proc/16889","url":null,"abstract":"<p>In this note, we provide an adaptation of the Kohler-Jobin rearrangement technique to the setting of the Gauss space. As a result, we prove the Gaussian analogue of the Kohler-Jobin resolution of a conjecture of Pólya-Szegö: when the Gaussian torsional rigidity of a domain is fixed, the Gaussian principal frequency is minimized for the half-space. At the core of this rearrangement technique is the idea of considering a “modified” torsional rigidity, with respect to a given function, and rearranging its layers to half-spaces, in a particular way; the Rayleigh quotient decreases with this procedure.</p> <p>We emphasize that the analogy of the Gaussian case with the Lebesgue case is not to be expected here, as in addition to some soft symmetrization ideas, the argument relies on the properties of some special functions; the fact that this analogy does hold is somewhat of a miracle.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"131 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Invariant connections on non-irreducible symmetric spaces with simple Lie group","authors":"Othmane Dani, Abdelhak Abouqateb, Saïd Benayadi","doi":"10.1090/proc/16903","DOIUrl":"https://doi.org/10.1090/proc/16903","url":null,"abstract":"<p>Consider a symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with simple Lie group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We demonstrate that when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not irreducible, it is necessarily even dimensional and noncompact. Furthermore, the subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also both noncompact and non-semisimple. Additionally, we establish that the only <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant connection on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the canonical connection. On the other hand, we show that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has an odd dimension, it must be irreducible, and the subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be semisimple. Finally, we present an explicit example, ","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"25 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Factorization of functions in the Schur-Agler class related to test functions","authors":"Mainak Bhowmik, Poornendu Kumar","doi":"10.1090/proc/16900","DOIUrl":"https://doi.org/10.1090/proc/16900","url":null,"abstract":"<p>We provide necessary and sufficient conditions for operator-valued functions on arbitrary sets associated with a collection of test functions to have factorizations in several situations.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"78 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A non-vanishing result on the singularity category","authors":"Xiao-Wu Chen, Zhi-Wei Li, Xiaojin Zhang, Zhibing Zhao","doi":"10.1090/proc/16898","DOIUrl":"https://doi.org/10.1090/proc/16898","url":null,"abstract":"<p>We prove that a virtually periodic object in an abelian category gives rise to a non-vanishing result on certain Hom groups in the singularity category. Consequently, for any artin algebra with infinite global dimension, its singularity category has no silting subcategory, and the associated differential graded Leavitt algebra has a non-vanishing cohomology in each degree. We verify the Singular Presilting Conjecture for singularly-minimal algebras and ultimately-closed algebras. We obtain a trichotomy on the Hom-finiteness of the cohomologies of differential graded Leavitt algebras.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"36 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Higher residues and canonical pairing on the twisted de Rham cohomology","authors":"Hoil Kim, Taejung Kim","doi":"10.1090/proc/16883","DOIUrl":"https://doi.org/10.1090/proc/16883","url":null,"abstract":"<p>We describe an explicit formula of the canonical pairing on the twisted de Rham cohomology associated with the category of local matrix factorizations and by characterizing its relation to Saito’s higher residue pairings we reprove the conjecture of Shklyarov [Adv. Math. 292 (2016), pp. 181–209].</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"10 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some maximum principles for parabolic mixed local/nonlocal operators","authors":"Serena Dipierro, Edoardo Proietti Lippi, Enrico Valdinoci","doi":"10.1090/proc/16899","DOIUrl":"https://doi.org/10.1090/proc/16899","url":null,"abstract":"<p>The goal of this paper is to establish new Maximum Principles for parabolic equations in the framework of mixed local/nonlocal operators.</p> <p>In particular, these results apply to the case of mixed local/nonlocal Neumann boundary conditions, as introduced by Dipierro, Proietti Lippi, and Valdinoci [Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp. 1093–1166].</p> <p>Moreover, they play an important role in the analysis of population dynamics involving the so-called Allee effect, which is performed by Dipierro, Proietti Lippi, and Valdinoci [J. Math. Biol. 89 (2024), Paper No. 19]. This is particularly relevant when studying biological populations, since the Allee effect detects a critical density below which the population is severely endangered and at risk of extinction.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"74 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}