{"title":"通过第三个莫拉瓦稳定器代数检测球体稳定同调环中的非琐乘积","authors":"Xiangjun Wang, Jianqiu Wu, Yu Zhang, Linan Zhong","doi":"10.1090/proc/16891","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than-or-equal-to 7\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p \\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime number. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S left-parenthesis 3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S(3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the third Morava stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found several families of nontrivial products in the stable homotopy ring of spheres <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we determine all nontrivial products in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the Greek letter family elements <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript s Baseline comma beta Subscript s Baseline comma gamma Subscript s Baseline\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha _s, \\beta _s, \\gamma _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and Cohen’s elements <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"zeta Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\zeta _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are detectable by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, we show <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta 1 gamma Subscript s Baseline zeta Subscript n Baseline not-equals 0 element-of pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta _1 \\gamma _s \\zeta _n \\neq 0 \\in \\pi _*(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n identical-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≡</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n \\equiv 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod 3, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s not-identical-to 0 comma plus-or-minus 1\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s \\not \\equiv 0, \\pm 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting nontrivial products in the stable homotopy ring of spheres via the third Morava stabilizer algebra\",\"authors\":\"Xiangjun Wang, Jianqiu Wu, Yu Zhang, Linan Zhong\",\"doi\":\"10.1090/proc/16891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than-or-equal-to 7\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p \\\\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime number. Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S left-parenthesis 3 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">S(3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the third Morava stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found several families of nontrivial products in the stable homotopy ring of spheres <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we determine all nontrivial products in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the Greek letter family elements <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha Subscript s Baseline comma beta Subscript s Baseline comma gamma Subscript s Baseline\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha _s, \\\\beta _s, \\\\gamma _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and Cohen’s elements <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"zeta Subscript n\\\"> <mml:semantics> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\zeta _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are detectable by <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, we show <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta 1 gamma Subscript s Baseline zeta Subscript n Baseline not-equals 0 element-of pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta _1 \\\\gamma _s \\\\zeta _n \\\\neq 0 \\\\in \\\\pi _*(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n identical-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≡</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n \\\\equiv 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod 3, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s not-identical-to 0 comma plus-or-minus 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">s \\\\not \\\\equiv 0, \\\\pm 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16891\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16891","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 p ≥ 7 p \geq 7 是一个素数。让 S ( 3 ) S(3) 表示第三个莫拉瓦稳定器代数。近年来,Kato-Shimomura 和 Gu-Wang-Wu 利用 H ∗ , ∗ ( S ( 3 ) 发现了球体稳定同调环 π ∗ ( S ) \pi _* (S) 中的几个非小乘积族。) H^{*,*} (S(3)) 。在本文中,我们确定了希腊字母族元素 α s , β s , γ s \alpha _s, \beta _s, \gamma _s和科恩元素 ζ n \zeta _n 在 π ∗ ( S ) \pi _* (S) 中的所有非小乘积,这些乘积都可以用 H ∗ , ∗ ( S ( 3 ) ) 检测到。 H^{*,*} (S(3)) 。特别是,我们证明 β 1 γ s ζ n ≠ 0 ∈ π∗ ( S ) \beta _1 \gamma _s \zeta _n \neq 0 \in \pi _*(S),如果 n ≡ 2 n \equiv 2 mod 3, s ≢ 0 , ± 1 s \not \equiv 0, \pm 1 mod p p 。
Detecting nontrivial products in the stable homotopy ring of spheres via the third Morava stabilizer algebra
Let p≥7p \geq 7 be a prime number. Let S(3)S(3) denote the third Morava stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found several families of nontrivial products in the stable homotopy ring of spheres π∗(S)\pi _* (S) using H∗,∗(S(3))H^{*,*} (S(3)). In this paper, we determine all nontrivial products in π∗(S)\pi _* (S) of the Greek letter family elements αs,βs,γs\alpha _s, \beta _s, \gamma _s and Cohen’s elements ζn\zeta _n which are detectable by H∗,∗(S(3))H^{*,*} (S(3)). In particular, we show β1γsζn≠0∈π∗(S)\beta _1 \gamma _s \zeta _n \neq 0 \in \pi _*(S), if n≡2n \equiv 2 mod 3, s≢0,±1s \not \equiv 0, \pm 1 mod pp.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.