通过第三个莫拉瓦稳定器代数检测球体稳定同调环中的非琐乘积

IF 0.8 3区 数学 Q2 MATHEMATICS
Xiangjun Wang, Jianqiu Wu, Yu Zhang, Linan Zhong
{"title":"通过第三个莫拉瓦稳定器代数检测球体稳定同调环中的非琐乘积","authors":"Xiangjun Wang, Jianqiu Wu, Yu Zhang, Linan Zhong","doi":"10.1090/proc/16891","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than-or-equal-to 7\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p \\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime number. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S left-parenthesis 3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S(3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the third Morava stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found several families of nontrivial products in the stable homotopy ring of spheres <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we determine all nontrivial products in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the Greek letter family elements <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript s Baseline comma beta Subscript s Baseline comma gamma Subscript s Baseline\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha _s, \\beta _s, \\gamma _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and Cohen’s elements <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"zeta Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\zeta _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are detectable by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, we show <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta 1 gamma Subscript s Baseline zeta Subscript n Baseline not-equals 0 element-of pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta _1 \\gamma _s \\zeta _n \\neq 0 \\in \\pi _*(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n identical-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≡</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n \\equiv 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod 3, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s not-identical-to 0 comma plus-or-minus 1\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s \\not \\equiv 0, \\pm 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting nontrivial products in the stable homotopy ring of spheres via the third Morava stabilizer algebra\",\"authors\":\"Xiangjun Wang, Jianqiu Wu, Yu Zhang, Linan Zhong\",\"doi\":\"10.1090/proc/16891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than-or-equal-to 7\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p \\\\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime number. Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S left-parenthesis 3 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">S(3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the third Morava stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found several families of nontrivial products in the stable homotopy ring of spheres <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we determine all nontrivial products in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the Greek letter family elements <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha Subscript s Baseline comma beta Subscript s Baseline comma gamma Subscript s Baseline\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha _s, \\\\beta _s, \\\\gamma _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and Cohen’s elements <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"zeta Subscript n\\\"> <mml:semantics> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\zeta _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are detectable by <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, we show <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta 1 gamma Subscript s Baseline zeta Subscript n Baseline not-equals 0 element-of pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta _1 \\\\gamma _s \\\\zeta _n \\\\neq 0 \\\\in \\\\pi _*(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n identical-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≡</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n \\\\equiv 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod 3, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s not-identical-to 0 comma plus-or-minus 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">s \\\\not \\\\equiv 0, \\\\pm 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16891\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16891","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 p ≥ 7 p \geq 7 是一个素数。让 S ( 3 ) S(3) 表示第三个莫拉瓦稳定器代数。近年来,Kato-Shimomura 和 Gu-Wang-Wu 利用 H ∗ , ∗ ( S ( 3 ) 发现了球体稳定同调环 π ∗ ( S ) \pi _* (S) 中的几个非小乘积族。) H^{*,*} (S(3)) 。在本文中,我们确定了希腊字母族元素 α s , β s , γ s \alpha _s, \beta _s, \gamma _s和科恩元素 ζ n \zeta _n 在 π ∗ ( S ) \pi _* (S) 中的所有非小乘积,这些乘积都可以用 H ∗ , ∗ ( S ( 3 ) ) 检测到。 H^{*,*} (S(3)) 。特别是,我们证明 β 1 γ s ζ n ≠ 0 ∈ π∗ ( S ) \beta _1 \gamma _s \zeta _n \neq 0 \in \pi _*(S),如果 n ≡ 2 n \equiv 2 mod 3, s ≢ 0 , ± 1 s \not \equiv 0, \pm 1 mod p p 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting nontrivial products in the stable homotopy ring of spheres via the third Morava stabilizer algebra

Let p 7 p \geq 7 be a prime number. Let S ( 3 ) S(3) denote the third Morava stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found several families of nontrivial products in the stable homotopy ring of spheres π ( S ) \pi _* (S) using H , ( S ( 3 ) ) H^{*,*} (S(3)) . In this paper, we determine all nontrivial products in π ( S ) \pi _* (S) of the Greek letter family elements α s , β s , γ s \alpha _s, \beta _s, \gamma _s and Cohen’s elements ζ n \zeta _n which are detectable by H , ( S ( 3 ) ) H^{*,*} (S(3)) . In particular, we show β 1 γ s ζ n 0 π ( S ) \beta _1 \gamma _s \zeta _n \neq 0 \in \pi _*(S) , if n 2 n \equiv 2 mod 3, s 0 , ± 1 s \not \equiv 0, \pm 1 mod p p .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信