Proceedings of the American Mathematical Society最新文献

筛选
英文 中文
The growth recurrence and Gelfand-Kirillov base of the ordinary cusp 普通顶点的增长递推和格尔芬-基里洛夫基
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-11 DOI: 10.1090/proc/16913
Alan Dills, Florian Enescu
{"title":"The growth recurrence and Gelfand-Kirillov base of the ordinary cusp","authors":"Alan Dills, Florian Enescu","doi":"10.1090/proc/16913","DOIUrl":"https://doi.org/10.1090/proc/16913","url":null,"abstract":"<p>We introduce the Gelfand-Kirillov base for a numerical semigroup ring over the prime field of characteristic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is prime, and show its existence for the semigroup ring of the ordinary cusp by establishing a growth recurrence with respect to Frobenius.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"84 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yosida distance and existence of invariant manifolds in the infinite-dimensional dynamical systems 无穷维动力系统中的约西达距离和不变流形的存在性
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-11 DOI: 10.1090/proc/16912
Xuan-Quang Bui, Nguyen Van Minh
{"title":"Yosida distance and existence of invariant manifolds in the infinite-dimensional dynamical systems","authors":"Xuan-Quang Bui, Nguyen Van Minh","doi":"10.1090/proc/16912","DOIUrl":"https://doi.org/10.1090/proc/16912","url":null,"abstract":"&lt;p&gt;We consider the existence of invariant manifolds to evolution equations &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u prime left-parenthesis t right-parenthesis equals upper A u left-parenthesis t right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo&gt;′&lt;/mml:mo&gt; &lt;/mml:msup&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;u’(t)=Au(t)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A colon upper D left-parenthesis upper A right-parenthesis subset-of double-struck upper X right-arrow double-struck upper X\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:mo&gt;:&lt;/mml:mo&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;⊂&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;X&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;→&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;X&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;A:D(A)subset mathbb {X}to mathbb {X}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; near its equilibrium &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A left-parenthesis 0 right-parenthesis equals 0\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;A(0)=0&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; under the assumption that its proto-derivative &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential upper A left-parenthesis x right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"normal\"&gt;∂&lt;/mml:mi&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;partial A(x)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; exists and is continuous in &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x element-of upper D left-parenthesis upper A right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo&gt;∈&lt;/mml:mo&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;A&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;xin D(A)&lt;/mml:annota","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"42 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Hilbert operators arising from Hausdorff matrices 豪斯多夫矩阵产生的广义希尔伯特算子
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-11 DOI: 10.1090/proc/16917
C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis
{"title":"Generalized Hilbert operators arising from Hausdorff matrices","authors":"C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis","doi":"10.1090/proc/16917","DOIUrl":"https://doi.org/10.1090/proc/16917","url":null,"abstract":"&lt;p&gt;For a finite, positive Borel measure &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;μ&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mu&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; on &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma 1 right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;(0,1)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; we consider an infinite matrix &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"&gt; &lt;mml:semantics&gt; &lt;mml:msub&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Γ&lt;/mml:mi&gt; &lt;mml:mi&gt;μ&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;Gamma _mu&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, related to the classical Hausdorff matrix defined by the same measure &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;μ&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mu&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;μ&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mu&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is the Lebesgue measure, &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"&gt; &lt;mml:semantics&gt; &lt;mml:msub&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Γ&lt;/mml:mi&gt; &lt;mml:mi&gt;μ&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;Gamma _mu&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; reduces to the classical Hilbert matrix. We prove that the matrices &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"&gt; &lt;mml:semantics&gt; &lt;mml:msub&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Γ&lt;/mml:mi&gt; &lt;mml:mi&gt;μ&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;Gamma _mu&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; are not Hankel, unless &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;μ&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mu&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is a constant multiple of the Lebesgue measure, we give necessary and sufficien","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"80 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A short note on 𝜋₁(𝐷𝑖𝑓𝑓_{∂}𝐷^{4𝑘}) for 𝑘≥3 关于𝜋₁(𝐷𝑖𝑓𝑓_{∂}𝐷^{4𝑘})的简短说明,适用于 𝑘≥3
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-11 DOI: 10.1090/proc/16908
Wei Wang
{"title":"A short note on 𝜋₁(𝐷𝑖𝑓𝑓_{∂}𝐷^{4𝑘}) for 𝑘≥3","authors":"Wei Wang","doi":"10.1090/proc/16908","DOIUrl":"https://doi.org/10.1090/proc/16908","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D i f f Subscript partial-differential Baseline left-parenthesis upper D Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>Diff</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> </mml:mrow> </mml:msub> <mml:mo>⁡</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">operatorname {Diff}_{partial }(D^{n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the topological group of diffeomorphisms of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">D^{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which agree with the identity near the boundary. In this short note, we compute the fundamental group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi 1 upper D i f f Subscript partial-differential Baseline left-parenthesis upper D Superscript 4 k Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>Diff</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> </mml:mrow> </mml:msub> <mml:mo>⁡</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">pi _1 operatorname {Diff}_{partial }(D^{4k})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 3\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">kgeq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"41 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A variance-sensitive Gaussian concentration inequality 对方差敏感的高斯浓度不等式
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-11 DOI: 10.1090/proc/16905
Nguyen Dung
{"title":"A variance-sensitive Gaussian concentration inequality","authors":"Nguyen Dung","doi":"10.1090/proc/16905","DOIUrl":"https://doi.org/10.1090/proc/16905","url":null,"abstract":"<p>In this note, we obtain a Gaussian concentration inequality for a class of non-Lipschitz functions. In the one-dimensional case, our results supplement those established by Paouris and Valettas [Ann. Probab. 46 (2018), pp. 1441–1454].</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"64 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Almost complex torus manifolds - a problem of Petrie type 几乎复杂的环流形--一个 Petrie 类型的问题
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-11 DOI: 10.1090/proc/16768
Donghoon Jang
{"title":"Almost complex torus manifolds - a problem of Petrie type","authors":"Donghoon Jang","doi":"10.1090/proc/16768","DOIUrl":"https://doi.org/10.1090/proc/16768","url":null,"abstract":"&lt;p&gt;The Petrie conjecture asserts that if a homotopy &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;C&lt;/mml:mi&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;P&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {CP}^n&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; admits a non-trivial circle action, its Pontryagin class agrees with that of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;C&lt;/mml:mi&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;P&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {CP}^n&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. Petrie proved this conjecture in the case where the manifold admits a &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript n\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;T&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;T^n&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-action. An almost complex torus manifold is a &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;2n&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-dimensional compact connected almost complex manifold equipped with an effective &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript n\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;T&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;T^n&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-action that has fixed points. For an almost complex torus manifold, there exists a graph that encodes information about the weights at the fixed points. We prove that if a &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;2n&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-dimensional almost complex torus manifold &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;M&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"121 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elliptic equations with matrix weights and measurable nonlinearities on nonsmooth domains 非光滑域上具有矩阵权重和可测非线性的椭圆方程
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-11 DOI: 10.1090/proc/16770
Sun-Sig Byun, Yumi Cho, Ho-Sik Lee
{"title":"Elliptic equations with matrix weights and measurable nonlinearities on nonsmooth domains","authors":"Sun-Sig Byun, Yumi Cho, Ho-Sik Lee","doi":"10.1090/proc/16770","DOIUrl":"https://doi.org/10.1090/proc/16770","url":null,"abstract":"<p>We study general elliptic equations with singular/degenerate matrix weights and measurable nonlinearities on nonsmooth bounded domains to obtain a global Calderón-Zygmund type estimate under possibly minimal assumptions that the logarithm of the matrix weight has a small bounded mean oscillation (BMO) norm, the nonlinearity is allowed to be merely measurable in one variable but has a small BMO norm in the other variables and that the boundary of the domain is sufficiently flat in Reifenberg sense.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"23 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On invariant generating sets for the cycle space 关于循环空间的不变生成集
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-11 DOI: 10.1090/proc/16910
Ádám Timár
{"title":"On invariant generating sets for the cycle space","authors":"Ádám Timár","doi":"10.1090/proc/16910","DOIUrl":"https://doi.org/10.1090/proc/16910","url":null,"abstract":"<p>Consider a unimodular random graph, or just a finitely generated Cayley graph. When does its cycle space have an invariant random generating set of cycles such that every edge is contained in finitely many of the cycles? Generating the free Loop <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> model as a factor of iid is closely connected to having such a generating set for FK-Ising cluster. We show that geodesic cycles do not always form such a generating set, by showing for a parameter regime of the FK-Ising model on the lamplighter group the origin is contained in infinitely many geodesic cycles. This answers a question by Angel, Ray and Spinka. Then we take a look at how the property of having an invariant locally finite generating set for the cycle space is preserved by Bernoulli percolation, and apply it to the problem of factor of iid presentations of the free Loop <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> model.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"79 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonradial solutions of a Neumann Hénon equation on a ball 球上 Neumann Hénon 方程的非径向解
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-01 DOI: 10.1090/proc/16897
Craig Cowan
{"title":"Nonradial solutions of a Neumann Hénon equation on a ball","authors":"Craig Cowan","doi":"10.1090/proc/16897","DOIUrl":"https://doi.org/10.1090/proc/16897","url":null,"abstract":"&lt;p&gt;In this work we examine the existence of positive classical solutions of &lt;disp-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u plus u equals StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline u Superscript p minus 1 Baseline 2nd Column a m p semicolon in upper B 1 comma 2nd Row 1st Column u greater-than 0 2nd Column a m p semicolon in upper B 1 comma 3rd Row 1st Column partial-differential Subscript nu Baseline u equals 0 2nd Column a m p semicolon on partial-differential upper B 1 comma EndLayout\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;{&lt;/mml:mo&gt; &lt;mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mo&gt;−&lt;/mml:mo&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Δ&lt;/mml:mi&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;−&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;/mml:mtd&gt; &lt;mml:mtd&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mi&gt;m&lt;/mml:mi&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;;&lt;/mml:mo&gt; &lt;mml:mtext&gt; in &lt;/mml:mtext&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;B&lt;/mml:mi&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mtd&gt; &lt;mml:mtd&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mi&gt;m&lt;/mml:mi&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;;&lt;/mml:mo&gt; &lt;mml:mtext&gt; in &lt;/mml:mtext&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;B&lt;/mml:mi&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:msub&gt; &lt;mml:mi mathvariant=\"normal\"&gt;∂&lt;/mml:mi&gt; &lt;mml:mi&gt;ν&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mtd&gt; &lt;mml:mtd&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mi&gt;m&lt;/mml:mi&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;;&lt;/mml:mo&gt; &lt;mml:mtext&gt; on &lt;/mml:mtext&gt; &lt;mml:mi mathvariant=\"normal\"&gt;∂&lt;/mml:mi&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;B&lt;/mml:mi&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;/mml:mtable&gt; &lt;mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\"/&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;begin{equation*} begin {cases} -Delta u +u = |x|^alpha u^{p-1} &amp; text { in } B_1, u&gt;0 &amp; text { in } B_1, partial _nu u= 0 &amp; text { on } partial B_1, end{cases} end{equation*}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/disp-formula&gt; where &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 1\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&gt;1&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xm","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"363 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved regularity for a Hessian-dependent functional 改进依赖于黑森函数的正则性
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-05-01 DOI: 10.1090/proc/16894
Vincenzo Bianca, Edgard Pimentel, José Urbano
{"title":"Improved regularity for a Hessian-dependent functional","authors":"Vincenzo Bianca, Edgard Pimentel, José Urbano","doi":"10.1090/proc/16894","DOIUrl":"https://doi.org/10.1090/proc/16894","url":null,"abstract":"<p>We prove that minimizers of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript d\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm of the Hessian in the unit ball of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are locally of class <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 comma alpha\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{1,alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our findings extend previous results on Hessian-dependent functionals to the borderline case and resonate with the Hölder regularity theory available for elliptic equations in double-divergence form.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"64 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信