{"title":"A variance-sensitive Gaussian concentration inequality","authors":"Nguyen Dung","doi":"10.1090/proc/16905","DOIUrl":null,"url":null,"abstract":"<p>In this note, we obtain a Gaussian concentration inequality for a class of non-Lipschitz functions. In the one-dimensional case, our results supplement those established by Paouris and Valettas [Ann. Probab. 46 (2018), pp. 1441–1454].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this note, we obtain a Gaussian concentration inequality for a class of non-Lipschitz functions. In the one-dimensional case, our results supplement those established by Paouris and Valettas [Ann. Probab. 46 (2018), pp. 1441–1454].