On invariant generating sets for the cycle space

IF 0.8 3区 数学 Q2 MATHEMATICS
Ádám Timár
{"title":"On invariant generating sets for the cycle space","authors":"Ádám Timár","doi":"10.1090/proc/16910","DOIUrl":null,"url":null,"abstract":"<p>Consider a unimodular random graph, or just a finitely generated Cayley graph. When does its cycle space have an invariant random generating set of cycles such that every edge is contained in finitely many of the cycles? Generating the free Loop <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> model as a factor of iid is closely connected to having such a generating set for FK-Ising cluster. We show that geodesic cycles do not always form such a generating set, by showing for a parameter regime of the FK-Ising model on the lamplighter group the origin is contained in infinitely many geodesic cycles. This answers a question by Angel, Ray and Spinka. Then we take a look at how the property of having an invariant locally finite generating set for the cycle space is preserved by Bernoulli percolation, and apply it to the problem of factor of iid presentations of the free Loop <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> model.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"79 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16910","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a unimodular random graph, or just a finitely generated Cayley graph. When does its cycle space have an invariant random generating set of cycles such that every edge is contained in finitely many of the cycles? Generating the free Loop O ( 1 ) O(1) model as a factor of iid is closely connected to having such a generating set for FK-Ising cluster. We show that geodesic cycles do not always form such a generating set, by showing for a parameter regime of the FK-Ising model on the lamplighter group the origin is contained in infinitely many geodesic cycles. This answers a question by Angel, Ray and Spinka. Then we take a look at how the property of having an invariant locally finite generating set for the cycle space is preserved by Bernoulli percolation, and apply it to the problem of factor of iid presentations of the free Loop O ( 1 ) O(1) model.

关于循环空间的不变生成集
考虑一个单模态随机图,或者只是一个有限生成的 Cayley 图。什么时候它的循环空间有一个不变的随机循环生成集,使得每条边都包含在有限个循环中?将自由环 O ( 1 ) O(1) 模型生成为 iid 的因子与 FK-Ising 簇的生成集密切相关。我们通过证明灯火组上 FK-Ising 模型的参数体系,证明了大地循环并不总是形成这样一个生成集,原点包含在无限多的大地循环中。这回答了安吉尔、雷和斯平卡提出的一个问题。然后,我们研究了伯努利渗流如何保留了循环空间具有不变局部有限生成集的性质,并将其应用于自由环 O ( 1 ) O(1) 模型的 iid 呈现因子问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信