{"title":"球上 Neumann Hénon 方程的非径向解","authors":"Craig Cowan","doi":"10.1090/proc/16897","DOIUrl":null,"url":null,"abstract":"<p>In this work we examine the existence of positive classical solutions of <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u plus u equals StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline u Superscript p minus 1 Baseline 2nd Column a m p semicolon in upper B 1 comma 2nd Row 1st Column u greater-than 0 2nd Column a m p semicolon in upper B 1 comma 3rd Row 1st Column partial-differential Subscript nu Baseline u equals 0 2nd Column a m p semicolon on partial-differential upper B 1 comma EndLayout\"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:mo>−</mml:mo> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mi>ν</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> on </mml:mtext> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\"/> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\begin {cases} -\\Delta u +u = |x|^\\alpha u^{p-1} & \\text { in } B_1, \\\\ u>0 & \\text { in } B_1, \\\\ \\partial _\\nu u= 0 & \\text { on } \\partial B_1, \\end{cases} \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1\"> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unit ball in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">{\\mathbb {R}}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 4\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N \\ge 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and is even. Of particular interest is the existence of nonradial position classical solutions. We show that under suitable conditions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p comma alpha\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p,\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there are positive classical nonradial solutions. Our approach is to utilize a variational approach on suitable convex cones.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"363 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonradial solutions of a Neumann Hénon equation on a ball\",\"authors\":\"Craig Cowan\",\"doi\":\"10.1090/proc/16897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we examine the existence of positive classical solutions of <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u plus u equals StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline u Superscript p minus 1 Baseline 2nd Column a m p semicolon in upper B 1 comma 2nd Row 1st Column u greater-than 0 2nd Column a m p semicolon in upper B 1 comma 3rd Row 1st Column partial-differential Subscript nu Baseline u equals 0 2nd Column a m p semicolon on partial-differential upper B 1 comma EndLayout\\\"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\\\"left left\\\" rowspacing=\\\".2em\\\" columnspacing=\\\"1em\\\" displaystyle=\\\"false\\\"> <mml:mtr> <mml:mtd> <mml:mo>−</mml:mo> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">∂</mml:mi> <mml:mi>ν</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> on </mml:mtext> <mml:mi mathvariant=\\\"normal\\\">∂</mml:mi> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\"/> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\begin {cases} -\\\\Delta u +u = |x|^\\\\alpha u^{p-1} & \\\\text { in } B_1, \\\\\\\\ u>0 & \\\\text { in } B_1, \\\\\\\\ \\\\partial _\\\\nu u= 0 & \\\\text { on } \\\\partial B_1, \\\\end{cases} \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B 1\\\"> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unit ball in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript upper N\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathbb {R}}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N greater-than-or-equal-to 4\\\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N \\\\ge 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and is even. Of particular interest is the existence of nonradial position classical solutions. We show that under suitable conditions on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p comma alpha\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p,\\\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there are positive classical nonradial solutions. Our approach is to utilize a variational approach on suitable convex cones.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"363 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16897\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们考察了 { - Δ u + u = | x |α u p - 1 a m p ; in B 1 , u > 0 a m p ; in B 1 , ∂ ν u = 0 a m p ; on ∂ B 1 , \begin{equation*} 的正经典解的存在性。\begin {cases} -\Delta u +u = |x|^\alpha u^{p-1} & \text { in }B_1, \ u>0 & \text { in }B_1, \partial _\nu u= 0 & \text { on }\B_1, end{cases}\end{equation*} 其中 p > 1 p>1 , α > 0 \alpha >0 和 B 1 B_1 是 R N {mathbb {R}}^N 中的单位球,其中 N ≥ 4 N \ge 4 并且是偶数。我们尤其关注非径向位置经典解的存在。我们证明,在 p , α p,\alpha 和 N N 的适当条件下,存在正的经典非径向解。我们的方法是在合适的凸锥上利用变分法。
Nonradial solutions of a Neumann Hénon equation on a ball
In this work we examine the existence of positive classical solutions of {−Δu+u=|x|αup−1amp; in B1,u>0amp; in B1,∂νu=0amp; on ∂B1,\begin{equation*} \begin {cases} -\Delta u +u = |x|^\alpha u^{p-1} & \text { in } B_1, \\ u>0 & \text { in } B_1, \\ \partial _\nu u= 0 & \text { on } \partial B_1, \end{cases} \end{equation*} where p>1p>1, α>0\alpha >0 and B1B_1 is the unit ball in RN{\mathbb {R}}^N where N≥4N \ge 4 and is even. Of particular interest is the existence of nonradial position classical solutions. We show that under suitable conditions on p,αp,\alpha and NN there are positive classical nonradial solutions. Our approach is to utilize a variational approach on suitable convex cones.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.