球上 Neumann Hénon 方程的非径向解

IF 0.8 3区 数学 Q2 MATHEMATICS
Craig Cowan
{"title":"球上 Neumann Hénon 方程的非径向解","authors":"Craig Cowan","doi":"10.1090/proc/16897","DOIUrl":null,"url":null,"abstract":"<p>In this work we examine the existence of positive classical solutions of <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u plus u equals StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline u Superscript p minus 1 Baseline 2nd Column a m p semicolon in upper B 1 comma 2nd Row 1st Column u greater-than 0 2nd Column a m p semicolon in upper B 1 comma 3rd Row 1st Column partial-differential Subscript nu Baseline u equals 0 2nd Column a m p semicolon on partial-differential upper B 1 comma EndLayout\"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:mo>−</mml:mo> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mi>ν</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> on </mml:mtext> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\"/> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\begin {cases} -\\Delta u +u = |x|^\\alpha u^{p-1} &amp; \\text { in } B_1, \\\\ u&gt;0 &amp; \\text { in } B_1, \\\\ \\partial _\\nu u= 0 &amp; \\text { on } \\partial B_1, \\end{cases} \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1\"> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unit ball in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">{\\mathbb {R}}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 4\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N \\ge 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and is even. Of particular interest is the existence of nonradial position classical solutions. We show that under suitable conditions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p comma alpha\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p,\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there are positive classical nonradial solutions. Our approach is to utilize a variational approach on suitable convex cones.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonradial solutions of a Neumann Hénon equation on a ball\",\"authors\":\"Craig Cowan\",\"doi\":\"10.1090/proc/16897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we examine the existence of positive classical solutions of <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u plus u equals StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline u Superscript p minus 1 Baseline 2nd Column a m p semicolon in upper B 1 comma 2nd Row 1st Column u greater-than 0 2nd Column a m p semicolon in upper B 1 comma 3rd Row 1st Column partial-differential Subscript nu Baseline u equals 0 2nd Column a m p semicolon on partial-differential upper B 1 comma EndLayout\\\"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\\\"left left\\\" rowspacing=\\\".2em\\\" columnspacing=\\\"1em\\\" displaystyle=\\\"false\\\"> <mml:mtr> <mml:mtd> <mml:mo>−</mml:mo> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">∂</mml:mi> <mml:mi>ν</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> on </mml:mtext> <mml:mi mathvariant=\\\"normal\\\">∂</mml:mi> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\"/> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\begin {cases} -\\\\Delta u +u = |x|^\\\\alpha u^{p-1} &amp; \\\\text { in } B_1, \\\\\\\\ u&gt;0 &amp; \\\\text { in } B_1, \\\\\\\\ \\\\partial _\\\\nu u= 0 &amp; \\\\text { on } \\\\partial B_1, \\\\end{cases} \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B 1\\\"> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unit ball in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript upper N\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathbb {R}}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N greater-than-or-equal-to 4\\\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N \\\\ge 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and is even. Of particular interest is the existence of nonradial position classical solutions. We show that under suitable conditions on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p comma alpha\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p,\\\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there are positive classical nonradial solutions. Our approach is to utilize a variational approach on suitable convex cones.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16897\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考察了 { - Δ u + u = | x |α u p - 1 a m p ; in B 1 , u > 0 a m p ; in B 1 , ∂ ν u = 0 a m p ; on ∂ B 1 , \begin{equation*} 的正经典解的存在性。\begin {cases} -\Delta u +u = |x|^\alpha u^{p-1} & \text { in }B_1, \ u>0 & \text { in }B_1, \partial _\nu u= 0 & \text { on }\B_1, end{cases}\end{equation*} 其中 p > 1 p>1 , α > 0 \alpha >0 和 B 1 B_1 是 R N {mathbb {R}}^N 中的单位球,其中 N ≥ 4 N \ge 4 并且是偶数。我们尤其关注非径向位置经典解的存在。我们证明,在 p , α p,\alpha 和 N N 的适当条件下,存在正的经典非径向解。我们的方法是在合适的凸锥上利用变分法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonradial solutions of a Neumann Hénon equation on a ball

In this work we examine the existence of positive classical solutions of { Δ u + u = | x | α u p 1 a m p ; in B 1 , u > 0 a m p ; in B 1 , ν u = 0 a m p ; on B 1 , \begin{equation*} \begin {cases} -\Delta u +u = |x|^\alpha u^{p-1} & \text { in } B_1, \\ u>0 & \text { in } B_1, \\ \partial _\nu u= 0 & \text { on } \partial B_1, \end{cases} \end{equation*} where p > 1 p>1 , α > 0 \alpha >0 and B 1 B_1 is the unit ball in R N {\mathbb {R}}^N where N 4 N \ge 4 and is even. Of particular interest is the existence of nonradial position classical solutions. We show that under suitable conditions on p , α p,\alpha and N N there are positive classical nonradial solutions. Our approach is to utilize a variational approach on suitable convex cones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信