{"title":"几乎复杂的环流形--一个 Petrie 类型的问题","authors":"Donghoon Jang","doi":"10.1090/proc/16768","DOIUrl":null,"url":null,"abstract":"<p>The Petrie conjecture asserts that if a homotopy <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admits a non-trivial circle action, its Pontryagin class agrees with that of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Petrie proved this conjecture in the case where the manifold admits a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">T^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action. An almost complex torus manifold is a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional compact connected almost complex manifold equipped with an effective <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">T^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action that has fixed points. For an almost complex torus manifold, there exists a graph that encodes information about the weights at the fixed points. We prove that if a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional almost complex torus manifold <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> only shares the Euler number with the complex projective space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the graph of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> agrees with the graph of a linear <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">T^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Consequently, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has the same weights at the fixed points, Chern numbers, cobordism class, Hirzebruch <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi Subscript y\"> <mml:semantics> <mml:msub> <mml:mi>χ</mml:mi> <mml:mi>y</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\chi _y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-genus, Todd genus, and signature as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, endowed with the standard linear action. Furthermore, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is equivariantly formal, the equivariant cohomology and the Chern classes of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> also agree.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"121 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost complex torus manifolds - a problem of Petrie type\",\"authors\":\"Donghoon Jang\",\"doi\":\"10.1090/proc/16768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Petrie conjecture asserts that if a homotopy <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admits a non-trivial circle action, its Pontryagin class agrees with that of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Petrie proved this conjecture in the case where the manifold admits a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">T^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action. An almost complex torus manifold is a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 n\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional compact connected almost complex manifold equipped with an effective <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">T^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action that has fixed points. For an almost complex torus manifold, there exists a graph that encodes information about the weights at the fixed points. We prove that if a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 n\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional almost complex torus manifold <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> only shares the Euler number with the complex projective space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the graph of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> agrees with the graph of a linear <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">T^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Consequently, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has the same weights at the fixed points, Chern numbers, cobordism class, Hirzebruch <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"chi Subscript y\\\"> <mml:semantics> <mml:msub> <mml:mi>χ</mml:mi> <mml:mi>y</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\chi _y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-genus, Todd genus, and signature as <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, endowed with the standard linear action. Furthermore, if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is equivariantly formal, the equivariant cohomology and the Chern classes of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> also agree.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16768\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16768","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Petrie 猜想断言,如果一个同调 C P n \mathbb {CP}^n 承认一个非三维圆作用,那么它的 Pontryagin 类与 C P n \mathbb {CP}^n 的 Pontryagin 类一致。Petrie 在流形接受 T n T^n 作用的情况下证明了这一猜想。几乎复环流形是一个 2 n 2n 维紧凑连通的几乎复环流形,它配备了一个有效的 T n T^n 作用,该作用具有定点。对于几乎复杂的环流形,存在一种图,可以编码定点处的权重信息。我们证明,如果一个 2 n 2 n 维的近乎复环流形 M M 只与复投影空间 C P n \mathbb {CP}^n 共享欧拉数,则 M M 的图与 C P n \mathbb {CP}^n 上的线性 T n T^n 作用的图一致。因此,M M 与 C P n \mathbb {CP}^n 具有相同的定点权重、切尔数、共线性类、Hirzebruch χ y \chi _y -属、Todd 属和签名,并赋予标准线性作用。此外,如果 M M 是等变形式的,那么 M M 和 C P n \mathbb {CP}^n 的等变同调与切尔恩类也是一致的。
Almost complex torus manifolds - a problem of Petrie type
The Petrie conjecture asserts that if a homotopy CPn\mathbb {CP}^n admits a non-trivial circle action, its Pontryagin class agrees with that of CPn\mathbb {CP}^n. Petrie proved this conjecture in the case where the manifold admits a TnT^n-action. An almost complex torus manifold is a 2n2n-dimensional compact connected almost complex manifold equipped with an effective TnT^n-action that has fixed points. For an almost complex torus manifold, there exists a graph that encodes information about the weights at the fixed points. We prove that if a 2n2n-dimensional almost complex torus manifold MM only shares the Euler number with the complex projective space CPn\mathbb {CP}^n, the graph of MM agrees with the graph of a linear TnT^n-action on CPn\mathbb {CP}^n. Consequently, MM has the same weights at the fixed points, Chern numbers, cobordism class, Hirzebruch χy\chi _y-genus, Todd genus, and signature as CPn\mathbb {CP}^n, endowed with the standard linear action. Furthermore, if MM is equivariantly formal, the equivariant cohomology and the Chern classes of MM and CPn\mathbb {CP}^n also agree.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.