Nonradial solutions of a Neumann Hénon equation on a ball

Pub Date : 2024-05-01 DOI:10.1090/proc/16897
Craig Cowan
{"title":"Nonradial solutions of a Neumann Hénon equation on a ball","authors":"Craig Cowan","doi":"10.1090/proc/16897","DOIUrl":null,"url":null,"abstract":"<p>In this work we examine the existence of positive classical solutions of <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u plus u equals StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline u Superscript p minus 1 Baseline 2nd Column a m p semicolon in upper B 1 comma 2nd Row 1st Column u greater-than 0 2nd Column a m p semicolon in upper B 1 comma 3rd Row 1st Column partial-differential Subscript nu Baseline u equals 0 2nd Column a m p semicolon on partial-differential upper B 1 comma EndLayout\"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:mo>−</mml:mo> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> in </mml:mtext> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mi>ν</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mtext> on </mml:mtext> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\"/> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\begin {cases} -\\Delta u +u = |x|^\\alpha u^{p-1} &amp; \\text { in } B_1, \\\\ u&gt;0 &amp; \\text { in } B_1, \\\\ \\partial _\\nu u= 0 &amp; \\text { on } \\partial B_1, \\end{cases} \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1\"> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unit ball in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">{\\mathbb {R}}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 4\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N \\ge 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and is even. Of particular interest is the existence of nonradial position classical solutions. We show that under suitable conditions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p comma alpha\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p,\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there are positive classical nonradial solutions. Our approach is to utilize a variational approach on suitable convex cones.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we examine the existence of positive classical solutions of { Δ u + u = | x | α u p 1 a m p ; in B 1 , u > 0 a m p ; in B 1 , ν u = 0 a m p ; on B 1 , \begin{equation*} \begin {cases} -\Delta u +u = |x|^\alpha u^{p-1} & \text { in } B_1, \\ u>0 & \text { in } B_1, \\ \partial _\nu u= 0 & \text { on } \partial B_1, \end{cases} \end{equation*} where p > 1 p>1 , α > 0 \alpha >0 and B 1 B_1 is the unit ball in R N {\mathbb {R}}^N where N 4 N \ge 4 and is even. Of particular interest is the existence of nonradial position classical solutions. We show that under suitable conditions on p , α p,\alpha and N N there are positive classical nonradial solutions. Our approach is to utilize a variational approach on suitable convex cones.

分享
查看原文
球上 Neumann Hénon 方程的非径向解
在这项工作中,我们考察了 { - Δ u + u = | x |α u p - 1 a m p ; in B 1 , u > 0 a m p ; in B 1 , ∂ ν u = 0 a m p ; on ∂ B 1 , \begin{equation*} 的正经典解的存在性。\begin {cases} -\Delta u +u = |x|^\alpha u^{p-1} & \text { in }B_1, \ u>0 & \text { in }B_1, \partial _\nu u= 0 & \text { on }\B_1, end{cases}\end{equation*} 其中 p > 1 p>1 , α > 0 \alpha >0 和 B 1 B_1 是 R N {mathbb {R}}^N 中的单位球,其中 N ≥ 4 N \ge 4 并且是偶数。我们尤其关注非径向位置经典解的存在。我们证明,在 p , α p,\alpha 和 N N 的适当条件下,存在正的经典非径向解。我们的方法是在合适的凸锥上利用变分法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信