C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis
{"title":"豪斯多夫矩阵产生的广义希尔伯特算子","authors":"C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis","doi":"10.1090/proc/16917","DOIUrl":null,"url":null,"abstract":"<p>For a finite, positive Borel measure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(0,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we consider an infinite matrix <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Gamma _\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, related to the classical Hausdorff matrix defined by the same measure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Lebesgue measure, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Gamma _\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> reduces to the classical Hilbert matrix. We prove that the matrices <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Gamma _\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are not Hankel, unless <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript p Baseline comma 1 less-than-or-equal-to p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace width=\"thinmathspace\"/> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^p, \\, 1 \\leq p > \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we study their compactness and complete continuity properties. In the case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 less-than-or-equal-to p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2\\leq p>\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we are able to compute the exact value of the norm of the operator.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"80 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Hilbert operators arising from Hausdorff matrices\",\"authors\":\"C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis\",\"doi\":\"10.1090/proc/16917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a finite, positive Borel measure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 0 comma 1 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(0,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we consider an infinite matrix <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript mu\\\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma _\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, related to the classical Hausdorff matrix defined by the same measure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Lebesgue measure, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript mu\\\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma _\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> reduces to the classical Hilbert matrix. We prove that the matrices <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript mu\\\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma _\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are not Hankel, unless <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript p Baseline comma 1 less-than-or-equal-to p greater-than normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace width=\\\"thinmathspace\\\"/> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H^p, \\\\, 1 \\\\leq p > \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we study their compactness and complete continuity properties. In the case <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 less-than-or-equal-to p greater-than normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2\\\\leq p>\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we are able to compute the exact value of the norm of the operator.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16917\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16917","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generalized Hilbert operators arising from Hausdorff matrices
For a finite, positive Borel measure μ\mu on (0,1)(0,1) we consider an infinite matrix Γμ\Gamma _\mu, related to the classical Hausdorff matrix defined by the same measure μ\mu, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When μ\mu is the Lebesgue measure, Γμ\Gamma _\mu reduces to the classical Hilbert matrix. We prove that the matrices Γμ\Gamma _\mu are not Hankel, unless μ\mu is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces Hp,1≤p>∞H^p, \, 1 \leq p > \infty, and we study their compactness and complete continuity properties. In the case 2≤p>∞2\leq p>\infty, we are able to compute the exact value of the norm of the operator.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.