豪斯多夫矩阵产生的广义希尔伯特算子

IF 0.8 3区 数学 Q2 MATHEMATICS
C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis
{"title":"豪斯多夫矩阵产生的广义希尔伯特算子","authors":"C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis","doi":"10.1090/proc/16917","DOIUrl":null,"url":null,"abstract":"<p>For a finite, positive Borel measure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(0,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we consider an infinite matrix <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Gamma _\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, related to the classical Hausdorff matrix defined by the same measure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Lebesgue measure, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Gamma _\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> reduces to the classical Hilbert matrix. We prove that the matrices <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Gamma _\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are not Hankel, unless <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript p Baseline comma 1 less-than-or-equal-to p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace width=\"thinmathspace\"/> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^p, \\, 1 \\leq p &gt; \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we study their compactness and complete continuity properties. In the case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 less-than-or-equal-to p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2\\leq p&gt;\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we are able to compute the exact value of the norm of the operator.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"80 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Hilbert operators arising from Hausdorff matrices\",\"authors\":\"C. Bellavita, N. Chalmoukis, V. Daskalogiannis, G. Stylogiannis\",\"doi\":\"10.1090/proc/16917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a finite, positive Borel measure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 0 comma 1 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(0,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we consider an infinite matrix <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript mu\\\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma _\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, related to the classical Hausdorff matrix defined by the same measure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Lebesgue measure, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript mu\\\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma _\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> reduces to the classical Hilbert matrix. We prove that the matrices <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript mu\\\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma _\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are not Hankel, unless <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript p Baseline comma 1 less-than-or-equal-to p greater-than normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace width=\\\"thinmathspace\\\"/> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H^p, \\\\, 1 \\\\leq p &gt; \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we study their compactness and complete continuity properties. In the case <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 less-than-or-equal-to p greater-than normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2\\\\leq p&gt;\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we are able to compute the exact value of the norm of the operator.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16917\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16917","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 ( 0 , 1 ) (0 , 1) 上的有限正伯尔量μ \mu,我们考虑一个无穷矩阵Γ μ \Gamma _\mu ,它与由相同量μ \mu 定义的经典豪斯多夫矩阵相关,其代数方式与希尔伯特矩阵与塞萨罗矩阵相关的代数方式相同。当 μ \mu 是 Lebesgue 度量时,Γ μ \Gamma _\mu 等同于经典的希尔伯特矩阵。我们证明了矩阵 Γ μ Gamma _\mu 不是汉克尔矩阵,除非 μ \mu 是 Lebesgue 量的常数倍,我们给出了它们在哈代空间 H p , 1 ≤ p > ∞ H^p, \, 1 \leq p > \infty 的尺度上有界的必要条件和充分条件,并研究了它们的紧凑性和完全连续性。在 2 ≤ p > ∞ 2\leq p>\infty 的情况下,我们能够计算出算子的精确规范值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Hilbert operators arising from Hausdorff matrices

For a finite, positive Borel measure μ \mu on ( 0 , 1 ) (0,1) we consider an infinite matrix Γ μ \Gamma _\mu , related to the classical Hausdorff matrix defined by the same measure μ \mu , in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When μ \mu is the Lebesgue measure, Γ μ \Gamma _\mu reduces to the classical Hilbert matrix. We prove that the matrices Γ μ \Gamma _\mu are not Hankel, unless μ \mu is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces H p , 1 p > H^p, \, 1 \leq p > \infty , and we study their compactness and complete continuity properties. In the case 2 p > 2\leq p>\infty , we are able to compute the exact value of the norm of the operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信