Yosida distance and existence of invariant manifolds in the infinite-dimensional dynamical systems

IF 0.8 3区 数学 Q2 MATHEMATICS
Xuan-Quang Bui, Nguyen Van Minh
{"title":"Yosida distance and existence of invariant manifolds in the infinite-dimensional dynamical systems","authors":"Xuan-Quang Bui, Nguyen Van Minh","doi":"10.1090/proc/16912","DOIUrl":null,"url":null,"abstract":"<p>We consider the existence of invariant manifolds to evolution equations <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u prime left-parenthesis t right-parenthesis equals upper A u left-parenthesis t right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>u</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">u’(t)=Au(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A colon upper D left-parenthesis upper A right-parenthesis subset-of double-struck upper X right-arrow double-struck upper X\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>:</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⊂</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">X</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A:D(A)\\subset \\mathbb {X}\\to \\mathbb {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near its equilibrium <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A left-parenthesis 0 right-parenthesis equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A(0)=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the assumption that its proto-derivative <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential upper A left-parenthesis x right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\partial A(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> exists and is continuous in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x element-of upper D left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x\\in D(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the sense of <italic>Yosida distance</italic>. <italic>Yosida distance</italic> between two (unbounded) linear operators <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding=\"application/x-tex\">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a Banach space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper X\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">X</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is defined as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d Subscript upper Y Baseline left-parenthesis upper U comma upper V right-parenthesis colon-equal limit sup double-vertical-bar upper U Subscript mu Baseline minus upper V Subscript mu Baseline double-vertical-bar\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>Y</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>U</mml:mi> <mml:mo>,</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≔</mml:mo> <mml:munder> <mml:mo movablelimits=\"true\" form=\"prefix\">lim sup</mml:mo> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:munder> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>V</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d_Y(U,V)≔\\limsup _{\\mu \\to +\\infty } \\| U_\\mu -V_\\mu \\|</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">U_\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi>V</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">V_\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the Yosida approximations of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding=\"application/x-tex\">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively. We show that the above-mentioned equation has local stable and unstable invariant manifolds near an exponentially dichotomous equilibrium if the proto-derivative of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential upper A\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\partial A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is continuous in the sense of Yosida distance. The Yosida distance approach allows us to generalize the well-known results with possible applications to larger classes of partial differential equations and functional differential equations. The obtained results seem to be new.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16912","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the existence of invariant manifolds to evolution equations u ( t ) = A u ( t ) u’(t)=Au(t) , A : D ( A ) X X A:D(A)\subset \mathbb {X}\to \mathbb {X} near its equilibrium A ( 0 ) = 0 A(0)=0 under the assumption that its proto-derivative A ( x ) \partial A(x) exists and is continuous in x D ( A ) x\in D(A) in the sense of Yosida distance. Yosida distance between two (unbounded) linear operators U U and V V in a Banach space X \mathbb {X} is defined as d Y ( U , V ) lim sup μ + U μ V μ d_Y(U,V)≔\limsup _{\mu \to +\infty } \| U_\mu -V_\mu \| , where U μ U_\mu and V μ V_\mu are the Yosida approximations of U U and V V , respectively. We show that the above-mentioned equation has local stable and unstable invariant manifolds near an exponentially dichotomous equilibrium if the proto-derivative of A \partial A is continuous in the sense of Yosida distance. The Yosida distance approach allows us to generalize the well-known results with possible applications to larger classes of partial differential equations and functional differential equations. The obtained results seem to be new.

无穷维动力系统中的约西达距离和不变流形的存在性
我们考虑演化方程 u ′ ( t ) = A u ( t ) u'(t)=Au(t) , A : D ( A ) ⊂ X → X A 的不变流形的存在性:D(A)\subset \mathbb {X}\to \mathbb {X} near its equilibrium A ( 0 ) = 0 A(0)=0 under the assumption that its proto-derivative ∂ A ( x ) \partial A(x) exists and is continuous in x∈ D ( A ) x\in D(A) in the sense of Yosida distance.巴拿赫空间 X 中两个(无界)线性算子 U U 和 V V 之间的约西达距离定义为 d Y ( U , V ) ≔ lim sup μ → + ∞ ‖ U μ - V μ ‖ d_Y(U,V)≔\limsup _{\mu \to +\infty }。\| U_\mu -V_\mu \| ,其中 U μ U_\mu 和 V μ V_\mu 分别是 U U 和 V V 的约西达近似值。我们证明,如果 ∂ A \partial A 的原支数在 Yosida 距离意义上是连续的,则上述方程在指数二分均衡附近具有局部稳定和不稳定的不变流形。约西达距离方法使我们能够推广众所周知的结果,并可能应用于更大类的偏微分方程和函数微分方程。所获得的结果似乎是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信