{"title":"Yosida distance and existence of invariant manifolds in the infinite-dimensional dynamical systems","authors":"Xuan-Quang Bui, Nguyen Van Minh","doi":"10.1090/proc/16912","DOIUrl":null,"url":null,"abstract":"<p>We consider the existence of invariant manifolds to evolution equations <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u prime left-parenthesis t right-parenthesis equals upper A u left-parenthesis t right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>u</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">u’(t)=Au(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A colon upper D left-parenthesis upper A right-parenthesis subset-of double-struck upper X right-arrow double-struck upper X\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>:</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⊂</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">X</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A:D(A)\\subset \\mathbb {X}\\to \\mathbb {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near its equilibrium <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A left-parenthesis 0 right-parenthesis equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A(0)=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the assumption that its proto-derivative <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential upper A left-parenthesis x right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\partial A(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> exists and is continuous in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x element-of upper D left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x\\in D(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the sense of <italic>Yosida distance</italic>. <italic>Yosida distance</italic> between two (unbounded) linear operators <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding=\"application/x-tex\">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a Banach space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper X\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">X</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is defined as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d Subscript upper Y Baseline left-parenthesis upper U comma upper V right-parenthesis colon-equal limit sup double-vertical-bar upper U Subscript mu Baseline minus upper V Subscript mu Baseline double-vertical-bar\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>Y</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>U</mml:mi> <mml:mo>,</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≔</mml:mo> <mml:munder> <mml:mo movablelimits=\"true\" form=\"prefix\">lim sup</mml:mo> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:munder> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>V</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d_Y(U,V)≔\\limsup _{\\mu \\to +\\infty } \\| U_\\mu -V_\\mu \\|</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">U_\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V Subscript mu\"> <mml:semantics> <mml:msub> <mml:mi>V</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">V_\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the Yosida approximations of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding=\"application/x-tex\">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively. We show that the above-mentioned equation has local stable and unstable invariant manifolds near an exponentially dichotomous equilibrium if the proto-derivative of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential upper A\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\partial A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is continuous in the sense of Yosida distance. The Yosida distance approach allows us to generalize the well-known results with possible applications to larger classes of partial differential equations and functional differential equations. The obtained results seem to be new.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the existence of invariant manifolds to evolution equations u′(t)=Au(t)u’(t)=Au(t), A:D(A)⊂X→XA:D(A)\subset \mathbb {X}\to \mathbb {X} near its equilibrium A(0)=0A(0)=0 under the assumption that its proto-derivative ∂A(x)\partial A(x) exists and is continuous in x∈D(A)x\in D(A) in the sense of Yosida distance. Yosida distance between two (unbounded) linear operators UU and VV in a Banach space X\mathbb {X} is defined as dY(U,V)≔lim supμ→+∞‖Uμ−Vμ‖d_Y(U,V)≔\limsup _{\mu \to +\infty } \| U_\mu -V_\mu \|, where UμU_\mu and VμV_\mu are the Yosida approximations of UU and VV, respectively. We show that the above-mentioned equation has local stable and unstable invariant manifolds near an exponentially dichotomous equilibrium if the proto-derivative of ∂A\partial A is continuous in the sense of Yosida distance. The Yosida distance approach allows us to generalize the well-known results with possible applications to larger classes of partial differential equations and functional differential equations. The obtained results seem to be new.
我们考虑演化方程 u ′ ( t ) = A u ( t ) u'(t)=Au(t) , A : D ( A ) ⊂ X → X A 的不变流形的存在性:D(A)\subset \mathbb {X}\to \mathbb {X} near its equilibrium A ( 0 ) = 0 A(0)=0 under the assumption that its proto-derivative ∂ A ( x ) \partial A(x) exists and is continuous in x∈ D ( A ) x\in D(A) in the sense of Yosida distance.巴拿赫空间 X 中两个(无界)线性算子 U U 和 V V 之间的约西达距离定义为 d Y ( U , V ) ≔ lim sup μ → + ∞ ‖ U μ - V μ ‖ d_Y(U,V)≔\limsup _{\mu \to +\infty }。\| U_\mu -V_\mu \| ,其中 U μ U_\mu 和 V μ V_\mu 分别是 U U 和 V V 的约西达近似值。我们证明,如果 ∂ A \partial A 的原支数在 Yosida 距离意义上是连续的,则上述方程在指数二分均衡附近具有局部稳定和不稳定的不变流形。约西达距离方法使我们能够推广众所周知的结果,并可能应用于更大类的偏微分方程和函数微分方程。所获得的结果似乎是新的。