{"title":"改进依赖于黑森函数的正则性","authors":"Vincenzo Bianca, Edgard Pimentel, José Urbano","doi":"10.1090/proc/16894","DOIUrl":null,"url":null,"abstract":"<p>We prove that minimizers of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript d\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm of the Hessian in the unit ball of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are locally of class <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 comma alpha\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{1,\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our findings extend previous results on Hessian-dependent functionals to the borderline case and resonate with the Hölder regularity theory available for elliptic equations in double-divergence form.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved regularity for a Hessian-dependent functional\",\"authors\":\"Vincenzo Bianca, Edgard Pimentel, José Urbano\",\"doi\":\"10.1090/proc/16894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that minimizers of the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript d\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm of the Hessian in the unit ball of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript d\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are locally of class <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript 1 comma alpha\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^{1,\\\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our findings extend previous results on Hessian-dependent functionals to the borderline case and resonate with the Hölder regularity theory available for elliptic equations in double-divergence form.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,在 R d \mathbb {R}^d 的单位球中,Hessian 的 L d L^{d} 准则的最小值局部属于 C 1 类,α C^{1,\alpha }。 .我们的发现将之前关于依赖于 Hessian 的函数的结果扩展到了边界情况,并与双发散形式椭圆方程的赫尔德正则性理论产生了共鸣。
Improved regularity for a Hessian-dependent functional
We prove that minimizers of the LdL^{d}-norm of the Hessian in the unit ball of Rd\mathbb {R}^d are locally of class C1,αC^{1,\alpha }. Our findings extend previous results on Hessian-dependent functionals to the borderline case and resonate with the Hölder regularity theory available for elliptic equations in double-divergence form.