{"title":"A short note on 𝜋₁(𝐷𝑖𝑓𝑓_{∂}𝐷^{4𝑘}) for 𝑘≥3","authors":"Wei Wang","doi":"10.1090/proc/16908","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D i f f Subscript partial-differential Baseline left-parenthesis upper D Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>Diff</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> </mml:mrow> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Diff}_{\\partial }(D^{n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the topological group of diffeomorphisms of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">D^{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which agree with the identity near the boundary. In this short note, we compute the fundamental group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi 1 upper D i f f Subscript partial-differential Baseline left-parenthesis upper D Superscript 4 k Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>Diff</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> </mml:mrow> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _1 \\operatorname {Diff}_{\\partial }(D^{4k})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 3\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k\\geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"41 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16908","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let Diff∂(Dn)\operatorname {Diff}_{\partial }(D^{n}) be the topological group of diffeomorphisms of DnD^{n} which agree with the identity near the boundary. In this short note, we compute the fundamental group π1Diff∂(D4k)\pi _1 \operatorname {Diff}_{\partial }(D^{4k}) for k≥3k\geq 3.
让 Diff ∂ ( D n ) (operatorname {Diff}_{\partial }(D^{n})是 D n D^{n} 的差分变形的拓扑群,它与边界附近的同一性一致。在这篇短文中,我们计算了 k ≥ 3 k\geq 3 时的基群 π 1 Diff ∂ ( D 4 k ) \pi _1 \operatorname {Diff}_{\partial }(D^{4k}) 。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.