{"title":"A short note on 𝜋₁(𝐷𝑖𝑓𝑓_{∂}𝐷^{4𝑘}) for 𝑘≥3","authors":"Wei Wang","doi":"10.1090/proc/16908","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D i f f Subscript partial-differential Baseline left-parenthesis upper D Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>Diff</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> </mml:mrow> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Diff}_{\\partial }(D^{n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the topological group of diffeomorphisms of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">D^{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which agree with the identity near the boundary. In this short note, we compute the fundamental group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi 1 upper D i f f Subscript partial-differential Baseline left-parenthesis upper D Superscript 4 k Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>Diff</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> </mml:mrow> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _1 \\operatorname {Diff}_{\\partial }(D^{4k})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 3\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k\\geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let Diff∂(Dn)\operatorname {Diff}_{\partial }(D^{n}) be the topological group of diffeomorphisms of DnD^{n} which agree with the identity near the boundary. In this short note, we compute the fundamental group π1Diff∂(D4k)\pi _1 \operatorname {Diff}_{\partial }(D^{4k}) for k≥3k\geq 3.
让 Diff ∂ ( D n ) (operatorname {Diff}_{\partial }(D^{n})是 D n D^{n} 的差分变形的拓扑群,它与边界附近的同一性一致。在这篇短文中,我们计算了 k ≥ 3 k\geq 3 时的基群 π 1 Diff ∂ ( D 4 k ) \pi _1 \operatorname {Diff}_{\partial }(D^{4k}) 。