Proceedings of the American Mathematical Society最新文献

筛选
英文 中文
Automorphism groups of affine varieties consisting of algebraic elements 代数元素组成的仿射变体的自形群
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16759
Alexander Perepechko, Andriy Regeta
{"title":"Automorphism groups of affine varieties consisting of algebraic elements","authors":"Alexander Perepechko, Andriy Regeta","doi":"10.1090/proc/16759","DOIUrl":"https://doi.org/10.1090/proc/16759","url":null,"abstract":"<p>Given an affine algebraic variety <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that if the neutral component <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A normal u normal t Superscript ring Baseline left-parenthesis upper X right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"normal\">A</mml:mi> <mml:mi mathvariant=\"normal\">u</mml:mi> <mml:mi mathvariant=\"normal\">t</mml:mi> </mml:mrow> <mml:mo>∘<!-- ∘ --></mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathrm {Aut}^circ (X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the automorphism group consists of algebraic elements, then it is nested, i.e., is a direct limit of algebraic subgroups. This improves our earlier result (see Perepechko and Regeta [Transform. Groups 28 (2023), pp. 401–412]). To prove it, we obtain the following fact. If a connected ind-group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a closed connected nested ind-subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H subset-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Hsubset G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g element-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">gin G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> some positive power of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CR embeddings of nilpotent Lie groups 零potent Lie 群的 CR 嵌入
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16818
M. Cowling, M. Ganji, A. Ottazzi, G. Schmalz
{"title":"CR embeddings of nilpotent Lie groups","authors":"M. Cowling, M. Ganji, A. Ottazzi, G. Schmalz","doi":"10.1090/proc/16818","DOIUrl":"https://doi.org/10.1090/proc/16818","url":null,"abstract":"<p>In this note we show that a connected, simply connected nilpotent Lie group with an integrable left-invariant complex structure on a generating and suitably complemented subbundle of the tangent bundle admits a Cauchy-Riemann (CR) embedding in complex space defined by polynomials. We also show that a similar conclusion holds on suitable quotients of nilpotent Lie groups. Our results extend the CR embeddings constructed by Naruki [Publ. Res. Inst. Math. Sci. 6 (1970), pp. 113–187] in 1970. In particular, our generalisation to quotients allows us to see a class of Levi degenerate CR manifolds as quotients of nilpotent Lie groups.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “A Severi type theorem for surfaces in ℙ⁶” 对 "ℙ⁶中曲面的塞维里类型定理 "的更正
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16819
Pietro De Poi, Giovanna Ilardi
{"title":"Corrigendum to “A Severi type theorem for surfaces in ℙ⁶”","authors":"Pietro De Poi, Giovanna Ilardi","doi":"10.1090/proc/16819","DOIUrl":"https://doi.org/10.1090/proc/16819","url":null,"abstract":"<p>In Theorem 0.1 of the paper “A Severi type theorem for surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>” [Proc. Amer. Math. Soc. 149 (2021), pp. 591–605], we claimed to have given a complete classification of smooth surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with one 4-secant plane through the general point of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but the classification is still incomplete.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry of spectral bounds of curves of unitary operators 单元算子曲线谱边界的几何性质
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16815
Martin Miglioli
{"title":"Geometry of spectral bounds of curves of unitary operators","authors":"Martin Miglioli","doi":"10.1090/proc/16815","DOIUrl":"https://doi.org/10.1090/proc/16815","url":null,"abstract":"<p>This article presents a new proof of a theorem concerning bounds of the spectrum of the product of unitary operators and a generalization for differentiable curves of this theorem. The proofs involve metric geometric arguments in the group of unitary operators and the sphere where these operators act.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The geproci property in positive characteristic 正特征中的 geproci 性质
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16809
Jake Kettinger
{"title":"The geproci property in positive characteristic","authors":"Jake Kettinger","doi":"10.1090/proc/16809","DOIUrl":"https://doi.org/10.1090/proc/16809","url":null,"abstract":"<p>The geproci property is a recent development in the world of geometry. We call a set of points <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z subset-of-or-equal-to double-struck upper P Subscript k Superscript 3\"> <mml:semantics> <mml:mrow> <mml:mi>Z</mml:mi> <mml:mo>⊆</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>k</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Zsubseteq mathbb {P}_k^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis a comma b right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(a,b)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-geproci set (for GEneral PROjection is a Complete Intersection) if its projection from a general point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to a plane is a complete intersection of curves of degrees <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a less-than-or-equal-to b\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">aleq b</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Nondegenerate examples known as grids have been known since 2011. Nondegenerate nongrids were first described in 2018, working in characteristic 0. Almost all of these new examples are of a special kind called half grids.</p> <p>In this paper, based partly on the author’s thesis, we use a feature of geometry in positive characteristic to give new methods of producing geproci half grids and non-half grids.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral stability under removal of small segments 去除小段后的频谱稳定性
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16813
Xiang He
{"title":"Spectral stability under removal of small segments","authors":"Xiang He","doi":"10.1090/proc/16813","DOIUrl":"https://doi.org/10.1090/proc/16813","url":null,"abstract":"<p>In the present paper, we deepen the works of L. Abatangelo, V. Felli, L. Hillairet and C. Léna on the asymptotic estimates of the eigenvalue variation under removal of segments from the domain in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We get a sharp asymptotic estimate when the eigenvalue is simple and the removed segment is tangent to a nodal line of the associated eigenfunction. Moreover, we extend their results to the case when the eigenvalue is not simple.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Sobol’ sequence is not quasi-uniform in dimension 2 索布尔序列在维 2 中不是准均匀的
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16816
Takashi Goda
{"title":"The Sobol’ sequence is not quasi-uniform in dimension 2","authors":"Takashi Goda","doi":"10.1090/proc/16816","DOIUrl":"https://doi.org/10.1090/proc/16816","url":null,"abstract":"<p>Are common quasi-Monte Carlo sequences quasi-uniform? While this question remains widely open, in this short note, we prove that the two-dimensional Sobol’ sequence is not quasi-uniform. This result partially answers an unsolved problem of Sobol’ and Shukhman [Math. Comput. Simulation 75 (2007), pp. 80–86] in a negative manner.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Notes on noncommutative ergodic theorems 非交换遍历定理注释
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16807
Semyon Litvinov
{"title":"Notes on noncommutative ergodic theorems","authors":"Semyon Litvinov","doi":"10.1090/proc/16807","DOIUrl":"https://doi.org/10.1090/proc/16807","url":null,"abstract":"<p>Given a semifinite von Neumann algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathcal M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equipped with a faithful normal semifinite trace <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that the spaces <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^0(mathcal M,tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper R Subscript tau\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">mathcal R_tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are complete with respect to pointwise—almost uniform and bilaterally almost uniform—convergences in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^0(mathcal M,tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 1 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:ann","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some 𝑞-identities derived by the ordinary derivative operator 由普通导数算子推导出的一些Δ常数
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16817
Jin Wang, Ruiqi Ruan
{"title":"Some 𝑞-identities derived by the ordinary derivative operator","authors":"Jin Wang, Ruiqi Ruan","doi":"10.1090/proc/16817","DOIUrl":"https://doi.org/10.1090/proc/16817","url":null,"abstract":"<p>In this paper, we investigate applications of the ordinary derivative operator, instead of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-derivative operator, to the theory of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-binomial theorem, Ramanujan’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 1 Baseline psi 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_1psi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, the quintuple product identity, Gasper’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Clausen product formula, and Rogers’ <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 6 Baseline phi 5\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>6</mml:mn> </mml:msub> <mml:msub> <mml:mi>ϕ</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_6phi _5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BMO-type functionals, total variation, and Γ-convergence BMO 型函数、总变异和 Γ 收敛性
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-02-29 DOI: 10.1090/proc/16812
Panu Lahti, Quoc-Hung Nguyen
{"title":"BMO-type functionals, total variation, and Γ-convergence","authors":"Panu Lahti, Quoc-Hung Nguyen","doi":"10.1090/proc/16812","DOIUrl":"https://doi.org/10.1090/proc/16812","url":null,"abstract":"<p>We study the BMO-type functional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa Subscript epsilon Baseline left-parenthesis f comma double-struck upper R Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>κ</mml:mi> <mml:mrow> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">kappa _{varepsilon }(f,mathbb {R}^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which can be used to characterize bounded variation functions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f element-of normal upper B normal upper V left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">B</mml:mi> <mml:mi mathvariant=\"normal\">V</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">fin mathrm {BV}(mathbb {R}^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-limit of this functional, taken with respect to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript normal l normal o normal c Superscript 1\"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">l</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">c</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">L^1_{mathrm {loc}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convergence, is known to be <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one fourth StartAbsoluteValue upper D f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>D</mml:mi> <mml:mi>f</mml:mi> <mml:mro","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信