{"title":"有严格拓扑的向量连续函数空间上核算子的表征","authors":"Juliusz Stochmal","doi":"10.1090/proc/16805","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a completely regular Hausdorff space, let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\"application/x-tex\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote Banach spaces. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">C_b(X,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the space of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued bounded continuous functions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\"> <mml:semantics> <mml:mi>β</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the strict topology on this space. We establish the relationship between nuclear operators <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T colon upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis right-arrow upper F\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mi>F</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T:C_b(X,E)\\rightarrow F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> between the locally convex space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis comma beta right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>β</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(C_b(X,E),\\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the Banach space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\"application/x-tex\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and their representing operator-valued Borel measures.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"31 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology\",\"authors\":\"Juliusz Stochmal\",\"doi\":\"10.1090/proc/16805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a completely regular Hausdorff space, let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote Banach spaces. Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">C_b(X,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the space of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued bounded continuous functions on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta\\\"> <mml:semantics> <mml:mi>β</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the strict topology on this space. We establish the relationship between nuclear operators <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T colon upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis right-arrow upper F\\\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mi>F</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T:C_b(X,E)\\\\rightarrow F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> between the locally convex space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis comma beta right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>β</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(C_b(X,E),\\\\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the Banach space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and their representing operator-valued Borel measures.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16805\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16805","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 X X 是完全正则的豪斯多夫空间,设 E E 和 F F 表示巴拿赫空间。让 C b ( X , E ) C_b(X,E) 表示 X X 上 E E 有界连续函数的空间,让 β \beta 是这个空间的严格拓扑。我们建立局部凸空间 ( C b ( X , E ) , β ) (C_b(X,E),\beta ) 与巴拿赫空间 F F 之间核算子 T : C b ( X , E ) → F T:C_b(X,E)\rightarrow F 之间的关系,以及它们代表的算子值博尔量。
A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology
Let XX be a completely regular Hausdorff space, let EE and FF denote Banach spaces. Let Cb(X,E)C_b(X,E) denote the space of EE-valued bounded continuous functions on XX and let β\beta be the strict topology on this space. We establish the relationship between nuclear operators T:Cb(X,E)→FT:C_b(X,E)\rightarrow F between the locally convex space (Cb(X,E),β)(C_b(X,E),\beta ) and the Banach space FF and their representing operator-valued Borel measures.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.