BMO 型函数、总变异和 Γ 收敛性

Pub Date : 2024-02-29 DOI:10.1090/proc/16812
Panu Lahti, Quoc-Hung Nguyen
{"title":"BMO 型函数、总变异和 Γ 收敛性","authors":"Panu Lahti, Quoc-Hung Nguyen","doi":"10.1090/proc/16812","DOIUrl":null,"url":null,"abstract":"<p>We study the BMO-type functional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa Subscript epsilon Baseline left-parenthesis f comma double-struck upper R Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>κ</mml:mi> <mml:mrow> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\kappa _{\\varepsilon }(f,\\mathbb {R}^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which can be used to characterize bounded variation functions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f element-of normal upper B normal upper V left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">B</mml:mi> <mml:mi mathvariant=\"normal\">V</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f\\in \\mathrm {BV}(\\mathbb {R}^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-limit of this functional, taken with respect to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript normal l normal o normal c Superscript 1\"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">l</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">c</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">L^1_{\\mathrm {loc}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convergence, is known to be <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one fourth StartAbsoluteValue upper D f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>D</mml:mi> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tfrac 14 |Df|(\\mathbb {R}^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-limit with respect to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript normal l normal o normal c Superscript normal infinity\"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">l</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">c</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">L^{\\infty }_{\\mathrm {loc}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convergence is <disp-formula content-type=\"math/mathml\"> \\[ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one fourth StartAbsoluteValue upper D Superscript a Baseline f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis plus one fourth StartAbsoluteValue upper D Superscript c Baseline f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis plus one half StartAbsoluteValue upper D Superscript j Baseline f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis comma\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mi>a</mml:mi> </mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mi>c</mml:mi> </mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mi>j</mml:mi> </mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tfrac 14 |D^a f|(\\mathbb {R}^n)+\\tfrac 14 |D^c f|(\\mathbb {R}^n)+\\tfrac 12 |D^j f|(\\mathbb {R}^n),</mml:annotation> </mml:semantics> </mml:math> \\] </disp-formula> which agrees with the “pointwise” limit in the case of special functions of bounded varation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMO-type functionals, total variation, and Γ-convergence\",\"authors\":\"Panu Lahti, Quoc-Hung Nguyen\",\"doi\":\"10.1090/proc/16812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the BMO-type functional <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"kappa Subscript epsilon Baseline left-parenthesis f comma double-struck upper R Superscript n Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>κ</mml:mi> <mml:mrow> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\kappa _{\\\\varepsilon }(f,\\\\mathbb {R}^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which can be used to characterize bounded variation functions <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f element-of normal upper B normal upper V left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">B</mml:mi> <mml:mi mathvariant=\\\"normal\\\">V</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f\\\\in \\\\mathrm {BV}(\\\\mathbb {R}^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-limit of this functional, taken with respect to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript normal l normal o normal c Superscript 1\\\"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">l</mml:mi> <mml:mi mathvariant=\\\"normal\\\">o</mml:mi> <mml:mi mathvariant=\\\"normal\\\">c</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">L^1_{\\\\mathrm {loc}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convergence, is known to be <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"one fourth StartAbsoluteValue upper D f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>D</mml:mi> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tfrac 14 |Df|(\\\\mathbb {R}^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-limit with respect to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript normal l normal o normal c Superscript normal infinity\\\"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">l</mml:mi> <mml:mi mathvariant=\\\"normal\\\">o</mml:mi> <mml:mi mathvariant=\\\"normal\\\">c</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">L^{\\\\infty }_{\\\\mathrm {loc}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convergence is <disp-formula content-type=\\\"math/mathml\\\"> \\\\[ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"one fourth StartAbsoluteValue upper D Superscript a Baseline f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis plus one fourth StartAbsoluteValue upper D Superscript c Baseline f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis plus one half StartAbsoluteValue upper D Superscript j Baseline f EndAbsoluteValue left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis comma\\\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mi>a</mml:mi> </mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mi>c</mml:mi> </mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mi>j</mml:mi> </mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tfrac 14 |D^a f|(\\\\mathbb {R}^n)+\\\\tfrac 14 |D^c f|(\\\\mathbb {R}^n)+\\\\tfrac 12 |D^j f|(\\\\mathbb {R}^n),</mml:annotation> </mml:semantics> </mml:math> \\\\] </disp-formula> which agrees with the “pointwise” limit in the case of special functions of bounded varation.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 BMO 型函数 κ ε ( f , R n ) \kappa _{\varepsilon }(f,\mathbb {R}^n),它可以用来描述有界变化函数 f∈ B V ( R n ) f\in \mathrm {BV}(\mathbb {R}^n)。该函数的 Γ \Gamma - Limit 取自 L l o c 1 L^1_{mathrm {loc}} 。 -收敛性,已知为 1 4 | D f | ( R n ) \tfrac 14 |Df|(\mathbb {R}^n) .我们证明,相对于 L l o c ∞ L^{infty }_{mathrm {loc}} 的 Γ \Gamma - Limit 是 -convergence is \[ 1 4 | D a f | ( R n ) + 1 4 | D c f | ( R n ) + 1 2 | D j f | ( R n ) 、 \tfrac 14 |D^a f|(\mathbb {R}^n)+\tfrac 14 |D^c f|(\mathbb {R}^n)+\tfrac 12 |D^j f|(\mathbb {R}^n), \]这与有界变化的特殊函数情况下的 "pointwise "极限一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
BMO-type functionals, total variation, and Γ-convergence

We study the BMO-type functional κ ε ( f , R n ) \kappa _{\varepsilon }(f,\mathbb {R}^n) , which can be used to characterize bounded variation functions f B V ( R n ) f\in \mathrm {BV}(\mathbb {R}^n) . The Γ \Gamma -limit of this functional, taken with respect to L l o c 1 L^1_{\mathrm {loc}} -convergence, is known to be 1 4 | D f | ( R n ) \tfrac 14 |Df|(\mathbb {R}^n) . We show that the Γ \Gamma -limit with respect to L l o c L^{\infty }_{\mathrm {loc}} -convergence is \[ 1 4 | D a f | ( R n ) + 1 4 | D c f | ( R n ) + 1 2 | D j f | ( R n ) , \tfrac 14 |D^a f|(\mathbb {R}^n)+\tfrac 14 |D^c f|(\mathbb {R}^n)+\tfrac 12 |D^j f|(\mathbb {R}^n), \] which agrees with the “pointwise” limit in the case of special functions of bounded varation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信