{"title":"椭圆曲面去星形化纤维积的霍奇数","authors":"Chad Schoen","doi":"10.1090/proc/16803","DOIUrl":null,"url":null,"abstract":"<p>Each element of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis double-struck upper Z Subscript greater-than-or-equal-to 0 Baseline right-parenthesis squared\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\Bbb Z_{\\geq 0})^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is realized as the <italic>Hodge vector</italic> <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis h Superscript 3 comma 0 Baseline left-parenthesis upper Z right-parenthesis comma h Superscript 2 comma 1 Baseline left-parenthesis upper Z right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(h^{3,0}(Z),h^{2,1}(Z))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of some compact, connected, three dimensional, complex, submanifold, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z subset-of double-struck upper P Subscript double-struck upper C Superscript upper N\"> <mml:semantics> <mml:mrow> <mml:mi>Z</mml:mi> <mml:mo>⊂</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Z\\subset \\Bbb P^N_{\\Bbb C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Each <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis x comma y right-parenthesis element-of left-parenthesis double-struck upper Z Subscript greater-than-or-equal-to 1 Baseline right-parenthesis squared\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(x,y)\\in (\\Bbb Z_{\\geq 1})^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y less-than-or-equal-to 11 x plus 8\"> <mml:semantics> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>11</mml:mn> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">y\\leq 11x+8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is shown to be the Hodge vector of a projective desingularized fiber product of elliptic surfaces which moves in moduli.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"32 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hodge numbers of desingularized fiber products of elliptic surfaces\",\"authors\":\"Chad Schoen\",\"doi\":\"10.1090/proc/16803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Each element of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis double-struck upper Z Subscript greater-than-or-equal-to 0 Baseline right-parenthesis squared\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\Bbb Z_{\\\\geq 0})^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is realized as the <italic>Hodge vector</italic> <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis h Superscript 3 comma 0 Baseline left-parenthesis upper Z right-parenthesis comma h Superscript 2 comma 1 Baseline left-parenthesis upper Z right-parenthesis right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(h^{3,0}(Z),h^{2,1}(Z))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of some compact, connected, three dimensional, complex, submanifold, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z subset-of double-struck upper P Subscript double-struck upper C Superscript upper N\\\"> <mml:semantics> <mml:mrow> <mml:mi>Z</mml:mi> <mml:mo>⊂</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>N</mml:mi> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">Z\\\\subset \\\\Bbb P^N_{\\\\Bbb C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Each <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis x comma y right-parenthesis element-of left-parenthesis double-struck upper Z Subscript greater-than-or-equal-to 1 Baseline right-parenthesis squared\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(x,y)\\\\in (\\\\Bbb Z_{\\\\geq 1})^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y less-than-or-equal-to 11 x plus 8\\\"> <mml:semantics> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>11</mml:mn> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">y\\\\leq 11x+8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is shown to be the Hodge vector of a projective desingularized fiber product of elliptic surfaces which moves in moduli.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16803\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16803","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
( Z ≥ 0 ) 2 (\Bbb Z_{\geq 0})^2 中的每个元素都是作为某个紧凑的、连通的、三维的、复数的、子满面 Z ⊂ P C N Z 的子集 \Bbb P^N_{\Bbb C} 的霍奇向量 ( h 3 , 0 ( Z ) , h 2 , 1 ( Z ) ) (h^{3,0}(Z),h^{2,1}(Z)) 来实现的。每个 ( x , y ) ∈ ( Z ≥ 1 ) 2 (x,y)\in (\Bbb Z_{\geq 1})^2 with y ≤ 11 x + 8 y\leq 11x+8 被证明是椭圆曲面的投影去纤积的霍奇向量,它在模数中移动。
Hodge numbers of desingularized fiber products of elliptic surfaces
Each element of (Z≥0)2(\Bbb Z_{\geq 0})^2 is realized as the Hodge vector(h3,0(Z),h2,1(Z))(h^{3,0}(Z),h^{2,1}(Z)) of some compact, connected, three dimensional, complex, submanifold, Z⊂PCNZ\subset \Bbb P^N_{\Bbb C}. Each (x,y)∈(Z≥1)2(x,y)\in (\Bbb Z_{\geq 1})^2 with y≤11x+8y\leq 11x+8 is shown to be the Hodge vector of a projective desingularized fiber product of elliptic surfaces which moves in moduli.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.