A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology

IF 0.8 3区 数学 Q2 MATHEMATICS
Juliusz Stochmal
{"title":"A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology","authors":"Juliusz Stochmal","doi":"10.1090/proc/16805","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a completely regular Hausdorff space, let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\"application/x-tex\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote Banach spaces. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">C_b(X,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the space of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued bounded continuous functions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\"> <mml:semantics> <mml:mi>β</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the strict topology on this space. We establish the relationship between nuclear operators <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T colon upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis right-arrow upper F\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mi>F</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T:C_b(X,E)\\rightarrow F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> between the locally convex space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper C Subscript b Baseline left-parenthesis upper X comma upper E right-parenthesis comma beta right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>β</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(C_b(X,E),\\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the Banach space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\"application/x-tex\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and their representing operator-valued Borel measures.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"31 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16805","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X X be a completely regular Hausdorff space, let E E and F F denote Banach spaces. Let C b ( X , E ) C_b(X,E) denote the space of E E -valued bounded continuous functions on X X and let β \beta be the strict topology on this space. We establish the relationship between nuclear operators T : C b ( X , E ) F T:C_b(X,E)\rightarrow F between the locally convex space ( C b ( X , E ) , β ) (C_b(X,E),\beta ) and the Banach space F F and their representing operator-valued Borel measures.

有严格拓扑的向量连续函数空间上核算子的表征
设 X X 是完全正则的豪斯多夫空间,设 E E 和 F F 表示巴拿赫空间。让 C b ( X , E ) C_b(X,E) 表示 X X 上 E E 有界连续函数的空间,让 β \beta 是这个空间的严格拓扑。我们建立局部凸空间 ( C b ( X , E ) , β ) (C_b(X,E),\beta ) 与巴拿赫空间 F F 之间核算子 T : C b ( X , E ) → F T:C_b(X,E)\rightarrow F 之间的关系,以及它们代表的算子值博尔量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信