{"title":"Automorphism groups of affine varieties consisting of algebraic elements","authors":"Alexander Perepechko, Andriy Regeta","doi":"10.1090/proc/16759","DOIUrl":"https://doi.org/10.1090/proc/16759","url":null,"abstract":"<p>Given an affine algebraic variety <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that if the neutral component <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A normal u normal t Superscript ring Baseline left-parenthesis upper X right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"normal\">A</mml:mi> <mml:mi mathvariant=\"normal\">u</mml:mi> <mml:mi mathvariant=\"normal\">t</mml:mi> </mml:mrow> <mml:mo>∘<!-- ∘ --></mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathrm {Aut}^circ (X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the automorphism group consists of algebraic elements, then it is nested, i.e., is a direct limit of algebraic subgroups. This improves our earlier result (see Perepechko and Regeta [Transform. Groups 28 (2023), pp. 401–412]). To prove it, we obtain the following fact. If a connected ind-group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a closed connected nested ind-subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H subset-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Hsubset G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g element-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">gin G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> some positive power of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"138 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The prime spectrum of an 𝐿-algebra","authors":"Wolfgang Rump, Leandro Vendramin","doi":"10.1090/proc/16802","DOIUrl":"https://doi.org/10.1090/proc/16802","url":null,"abstract":"<p>We prove that the lattice of ideals of an arbitrary <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra is distributive. As a consequence, a spectral theory applies with no restriction. We also study the spectrum (i.e. the set of prime ideals) of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras and characterize prime ideals in topological terms.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"21 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CR embeddings of nilpotent Lie groups","authors":"M. Cowling, M. Ganji, A. Ottazzi, G. Schmalz","doi":"10.1090/proc/16818","DOIUrl":"https://doi.org/10.1090/proc/16818","url":null,"abstract":"<p>In this note we show that a connected, simply connected nilpotent Lie group with an integrable left-invariant complex structure on a generating and suitably complemented subbundle of the tangent bundle admits a Cauchy-Riemann (CR) embedding in complex space defined by polynomials. We also show that a similar conclusion holds on suitable quotients of nilpotent Lie groups. Our results extend the CR embeddings constructed by Naruki [Publ. Res. Inst. Math. Sci. 6 (1970), pp. 113–187] in 1970. In particular, our generalisation to quotients allows us to see a class of Levi degenerate CR manifolds as quotients of nilpotent Lie groups.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"16 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to “A Severi type theorem for surfaces in ℙ⁶”","authors":"Pietro De Poi, Giovanna Ilardi","doi":"10.1090/proc/16819","DOIUrl":"https://doi.org/10.1090/proc/16819","url":null,"abstract":"<p>In Theorem 0.1 of the paper “A Severi type theorem for surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>” [Proc. Amer. Math. Soc. 149 (2021), pp. 591–605], we claimed to have given a complete classification of smooth surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with one 4-secant plane through the general point of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but the classification is still incomplete.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"31 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometry of spectral bounds of curves of unitary operators","authors":"Martin Miglioli","doi":"10.1090/proc/16815","DOIUrl":"https://doi.org/10.1090/proc/16815","url":null,"abstract":"<p>This article presents a new proof of a theorem concerning bounds of the spectrum of the product of unitary operators and a generalization for differentiable curves of this theorem. The proofs involve metric geometric arguments in the group of unitary operators and the sphere where these operators act.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"180 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The geproci property in positive characteristic","authors":"Jake Kettinger","doi":"10.1090/proc/16809","DOIUrl":"https://doi.org/10.1090/proc/16809","url":null,"abstract":"<p>The geproci property is a recent development in the world of geometry. We call a set of points <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z subset-of-or-equal-to double-struck upper P Subscript k Superscript 3\"> <mml:semantics> <mml:mrow> <mml:mi>Z</mml:mi> <mml:mo>⊆</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>k</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Zsubseteq mathbb {P}_k^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis a comma b right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(a,b)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-geproci set (for GEneral PROjection is a Complete Intersection) if its projection from a general point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to a plane is a complete intersection of curves of degrees <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a less-than-or-equal-to b\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">aleq b</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Nondegenerate examples known as grids have been known since 2011. Nondegenerate nongrids were first described in 2018, working in characteristic 0. Almost all of these new examples are of a special kind called half grids.</p> <p>In this paper, based partly on the author’s thesis, we use a feature of geometry in positive characteristic to give new methods of producing geproci half grids and non-half grids.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"226 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral stability under removal of small segments","authors":"Xiang He","doi":"10.1090/proc/16813","DOIUrl":"https://doi.org/10.1090/proc/16813","url":null,"abstract":"<p>In the present paper, we deepen the works of L. Abatangelo, V. Felli, L. Hillairet and C. Léna on the asymptotic estimates of the eigenvalue variation under removal of segments from the domain in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We get a sharp asymptotic estimate when the eigenvalue is simple and the removed segment is tangent to a nodal line of the associated eigenfunction. Moreover, we extend their results to the case when the eigenvalue is not simple.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"16 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Sobol’ sequence is not quasi-uniform in dimension 2","authors":"Takashi Goda","doi":"10.1090/proc/16816","DOIUrl":"https://doi.org/10.1090/proc/16816","url":null,"abstract":"<p>Are common quasi-Monte Carlo sequences quasi-uniform? While this question remains widely open, in this short note, we prove that the two-dimensional Sobol’ sequence is not quasi-uniform. This result partially answers an unsolved problem of Sobol’ and Shukhman [Math. Comput. Simulation 75 (2007), pp. 80–86] in a negative manner.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"31 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some 𝑞-identities derived by the ordinary derivative operator","authors":"Jin Wang, Ruiqi Ruan","doi":"10.1090/proc/16817","DOIUrl":"https://doi.org/10.1090/proc/16817","url":null,"abstract":"<p>In this paper, we investigate applications of the ordinary derivative operator, instead of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-derivative operator, to the theory of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-binomial theorem, Ramanujan’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 1 Baseline psi 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_1psi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, the quintuple product identity, Gasper’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Clausen product formula, and Rogers’ <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 6 Baseline phi 5\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>6</mml:mn> </mml:msub> <mml:msub> <mml:mi>ϕ</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_6phi _5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"56 73 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}