{"title":"Corrigendum to “A Severi type theorem for surfaces in ℙ⁶”","authors":"Pietro De Poi, Giovanna Ilardi","doi":"10.1090/proc/16819","DOIUrl":null,"url":null,"abstract":"<p>In Theorem 0.1 of the paper “A Severi type theorem for surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>” [Proc. Amer. Math. Soc. 149 (2021), pp. 591–605], we claimed to have given a complete classification of smooth surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with one 4-secant plane through the general point of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 6\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but the classification is still incomplete.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16819","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In Theorem 0.1 of the paper “A Severi type theorem for surfaces in P6\mathbb {P}^6” [Proc. Amer. Math. Soc. 149 (2021), pp. 591–605], we claimed to have given a complete classification of smooth surfaces in P6\mathbb {P}^6 with one 4-secant plane through the general point of P6\mathbb {P}^6, but the classification is still incomplete.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.