{"title":"CR embeddings of nilpotent Lie groups","authors":"M. Cowling, M. Ganji, A. Ottazzi, G. Schmalz","doi":"10.1090/proc/16818","DOIUrl":null,"url":null,"abstract":"<p>In this note we show that a connected, simply connected nilpotent Lie group with an integrable left-invariant complex structure on a generating and suitably complemented subbundle of the tangent bundle admits a Cauchy-Riemann (CR) embedding in complex space defined by polynomials. We also show that a similar conclusion holds on suitable quotients of nilpotent Lie groups. Our results extend the CR embeddings constructed by Naruki [Publ. Res. Inst. Math. Sci. 6 (1970), pp. 113–187] in 1970. In particular, our generalisation to quotients allows us to see a class of Levi degenerate CR manifolds as quotients of nilpotent Lie groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this note we show that a connected, simply connected nilpotent Lie group with an integrable left-invariant complex structure on a generating and suitably complemented subbundle of the tangent bundle admits a Cauchy-Riemann (CR) embedding in complex space defined by polynomials. We also show that a similar conclusion holds on suitable quotients of nilpotent Lie groups. Our results extend the CR embeddings constructed by Naruki [Publ. Res. Inst. Math. Sci. 6 (1970), pp. 113–187] in 1970. In particular, our generalisation to quotients allows us to see a class of Levi degenerate CR manifolds as quotients of nilpotent Lie groups.