{"title":"CR embeddings of nilpotent Lie groups","authors":"M. Cowling, M. Ganji, A. Ottazzi, G. Schmalz","doi":"10.1090/proc/16818","DOIUrl":null,"url":null,"abstract":"<p>In this note we show that a connected, simply connected nilpotent Lie group with an integrable left-invariant complex structure on a generating and suitably complemented subbundle of the tangent bundle admits a Cauchy-Riemann (CR) embedding in complex space defined by polynomials. We also show that a similar conclusion holds on suitable quotients of nilpotent Lie groups. Our results extend the CR embeddings constructed by Naruki [Publ. Res. Inst. Math. Sci. 6 (1970), pp. 113–187] in 1970. In particular, our generalisation to quotients allows us to see a class of Levi degenerate CR manifolds as quotients of nilpotent Lie groups.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"16 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16818","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this note we show that a connected, simply connected nilpotent Lie group with an integrable left-invariant complex structure on a generating and suitably complemented subbundle of the tangent bundle admits a Cauchy-Riemann (CR) embedding in complex space defined by polynomials. We also show that a similar conclusion holds on suitable quotients of nilpotent Lie groups. Our results extend the CR embeddings constructed by Naruki [Publ. Res. Inst. Math. Sci. 6 (1970), pp. 113–187] in 1970. In particular, our generalisation to quotients allows us to see a class of Levi degenerate CR manifolds as quotients of nilpotent Lie groups.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.