CR embeddings of nilpotent Lie groups

Pub Date : 2024-02-29 DOI:10.1090/proc/16818
M. Cowling, M. Ganji, A. Ottazzi, G. Schmalz
{"title":"CR embeddings of nilpotent Lie groups","authors":"M. Cowling, M. Ganji, A. Ottazzi, G. Schmalz","doi":"10.1090/proc/16818","DOIUrl":null,"url":null,"abstract":"<p>In this note we show that a connected, simply connected nilpotent Lie group with an integrable left-invariant complex structure on a generating and suitably complemented subbundle of the tangent bundle admits a Cauchy-Riemann (CR) embedding in complex space defined by polynomials. We also show that a similar conclusion holds on suitable quotients of nilpotent Lie groups. Our results extend the CR embeddings constructed by Naruki [Publ. Res. Inst. Math. Sci. 6 (1970), pp. 113–187] in 1970. In particular, our generalisation to quotients allows us to see a class of Levi degenerate CR manifolds as quotients of nilpotent Lie groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we show that a connected, simply connected nilpotent Lie group with an integrable left-invariant complex structure on a generating and suitably complemented subbundle of the tangent bundle admits a Cauchy-Riemann (CR) embedding in complex space defined by polynomials. We also show that a similar conclusion holds on suitable quotients of nilpotent Lie groups. Our results extend the CR embeddings constructed by Naruki [Publ. Res. Inst. Math. Sci. 6 (1970), pp. 113–187] in 1970. In particular, our generalisation to quotients allows us to see a class of Levi degenerate CR manifolds as quotients of nilpotent Lie groups.

分享
查看原文
零potent Lie 群的 CR 嵌入
在本论文中,我们证明了在切线束的生成子束上具有可积分左不变复结构的简单相连零能李群,在复空间中具有由多项式定义的考奇-黎曼(Cauchy-Riemann,CR)嵌入。我们还证明,类似的结论也适用于零potent Lie 群的适当商。我们的结果扩展了 Naruki [Publ. Res. Inst. Math. Sci.特别是,我们对商的概括使我们能够把一类 Levi 退化 CR 流形看成是无势 Lie 群的商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信