{"title":"Notes on noncommutative ergodic theorems","authors":"Semyon Litvinov","doi":"10.1090/proc/16807","DOIUrl":null,"url":null,"abstract":"<p>Given a semifinite von Neumann algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equipped with a faithful normal semifinite trace <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that the spaces <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^0(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper R Subscript tau\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal R_\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are complete with respect to pointwise—almost uniform and bilaterally almost uniform—convergences in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^0(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 1 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^1(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be extended to pointwise convergence of such nets in any fully symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E subset-of script upper R Subscript tau\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>⊂</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">E\\subset \\mathcal R_\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in particular, in any space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^p(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1\\leq p>\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Some applications of these results in the noncommutative ergodic theory are discussed.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"128 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16807","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a semifinite von Neumann algebra M\mathcal M equipped with a faithful normal semifinite trace τ\tau, we prove that the spaces L0(M,τ)L^0(\mathcal M,\tau ) and Rτ\mathcal R_\tau are complete with respect to pointwise—almost uniform and bilaterally almost uniform—convergences in L0(M,τ)L^0(\mathcal M,\tau ). Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space L1(M,τ)L^1(\mathcal M,\tau ) can be extended to pointwise convergence of such nets in any fully symmetric space E⊂RτE\subset \mathcal R_\tau, in particular, in any space Lp(M,τ)L^p(\mathcal M,\tau ), 1≤p>∞1\leq p>\infty. Some applications of these results in the noncommutative ergodic theory are discussed.
给定一个半有穷冯-诺依曼代数 M (M \mathcal M)配有一个忠实的正态半有穷迹线 τ \tau,我们证明空间 L 0 ( M , τ ) L^0(\mathcal M,\tau ) 和 R τ \mathcal R_\tau 就 L 0 ( M , τ ) L^0(\mathcal M,\tau ) 中的点-几乎均匀和双边几乎均匀-转换而言是完备的。然后,我们证明在空间 L 1 ( M , τ ) L^1(\mathcal M., \tau ) 中线性算子网的一类特殊的 Pointwise Cauchy 属性可以扩展到 L 0 ( M , τ ) L^0(\mathcal M., \tau ) 中、\tau ) 可以扩展到在任何完全对称空间 E ⊂ R τ E\subset \mathcal R_\tau 中这类网的点收敛,特别是在任何空间 L p ( M , τ ) L^p(\mathcal M,\tau ) , 1 ≤ p >;∞ 1\leq p>\infty .讨论了这些结果在非交换遍历理论中的一些应用。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.