Notes on noncommutative ergodic theorems

IF 0.8 3区 数学 Q2 MATHEMATICS
Semyon Litvinov
{"title":"Notes on noncommutative ergodic theorems","authors":"Semyon Litvinov","doi":"10.1090/proc/16807","DOIUrl":null,"url":null,"abstract":"<p>Given a semifinite von Neumann algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equipped with a faithful normal semifinite trace <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that the spaces <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^0(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper R Subscript tau\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal R_\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are complete with respect to pointwise—almost uniform and bilaterally almost uniform—convergences in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^0(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 1 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^1(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be extended to pointwise convergence of such nets in any fully symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E subset-of script upper R Subscript tau\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>⊂</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">E\\subset \\mathcal R_\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in particular, in any space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^p(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1\\leq p&gt;\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Some applications of these results in the noncommutative ergodic theory are discussed.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16807","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a semifinite von Neumann algebra M \mathcal M equipped with a faithful normal semifinite trace τ \tau , we prove that the spaces L 0 ( M , τ ) L^0(\mathcal M,\tau ) and R τ \mathcal R_\tau are complete with respect to pointwise—almost uniform and bilaterally almost uniform—convergences in L 0 ( M , τ ) L^0(\mathcal M,\tau ) . Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space L 1 ( M , τ ) L^1(\mathcal M,\tau ) can be extended to pointwise convergence of such nets in any fully symmetric space E R τ E\subset \mathcal R_\tau , in particular, in any space L p ( M , τ ) L^p(\mathcal M,\tau ) , 1 p > 1\leq p>\infty . Some applications of these results in the noncommutative ergodic theory are discussed.

非交换遍历定理注释
给定一个半有穷冯-诺依曼代数 M (M \mathcal M)配有一个忠实的正态半有穷迹线 τ \tau,我们证明空间 L 0 ( M , τ ) L^0(\mathcal M,\tau ) 和 R τ \mathcal R_\tau 就 L 0 ( M , τ ) L^0(\mathcal M,\tau ) 中的点-几乎均匀和双边几乎均匀-转换而言是完备的。然后,我们证明在空间 L 1 ( M , τ ) L^1(\mathcal M., \tau ) 中线性算子网的一类特殊的 Pointwise Cauchy 属性可以扩展到 L 0 ( M , τ ) L^0(\mathcal M., \tau ) 中、\tau ) 可以扩展到在任何完全对称空间 E ⊂ R τ E\subset \mathcal R_\tau 中这类网的点收敛,特别是在任何空间 L p ( M , τ ) L^p(\mathcal M,\tau ) , 1 ≤ p >;∞ 1\leq p>\infty .讨论了这些结果在非交换遍历理论中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信