代数元素组成的仿射变体的自形群

IF 0.8 3区 数学 Q2 MATHEMATICS
Alexander Perepechko, Andriy Regeta
{"title":"代数元素组成的仿射变体的自形群","authors":"Alexander Perepechko, Andriy Regeta","doi":"10.1090/proc/16759","DOIUrl":null,"url":null,"abstract":"<p>Given an affine algebraic variety <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that if the neutral component <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A normal u normal t Superscript ring Baseline left-parenthesis upper X right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"normal\">A</mml:mi> <mml:mi mathvariant=\"normal\">u</mml:mi> <mml:mi mathvariant=\"normal\">t</mml:mi> </mml:mrow> <mml:mo>∘<!-- ∘ --></mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {Aut}^\\circ (X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the automorphism group consists of algebraic elements, then it is nested, i.e., is a direct limit of algebraic subgroups. This improves our earlier result (see Perepechko and Regeta [Transform. Groups 28 (2023), pp. 401–412]). To prove it, we obtain the following fact. If a connected ind-group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a closed connected nested ind-subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H subset-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H\\subset G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g element-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g\\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> some positive power of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G equals upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G=H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automorphism groups of affine varieties consisting of algebraic elements\",\"authors\":\"Alexander Perepechko, Andriy Regeta\",\"doi\":\"10.1090/proc/16759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an affine algebraic variety <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that if the neutral component <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper A normal u normal t Superscript ring Baseline left-parenthesis upper X right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">A</mml:mi> <mml:mi mathvariant=\\\"normal\\\">u</mml:mi> <mml:mi mathvariant=\\\"normal\\\">t</mml:mi> </mml:mrow> <mml:mo>∘<!-- ∘ --></mml:mo> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {Aut}^\\\\circ (X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the automorphism group consists of algebraic elements, then it is nested, i.e., is a direct limit of algebraic subgroups. This improves our earlier result (see Perepechko and Regeta [Transform. Groups 28 (2023), pp. 401–412]). To prove it, we obtain the following fact. If a connected ind-group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a closed connected nested ind-subgroup <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H subset-of upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H\\\\subset G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g element-of upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g\\\\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> some positive power of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G equals upper H\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G=H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16759\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16759","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定仿射代数簇 X X,我们证明如果自变群的中性分量 A u t ∘ ( X ) \mathrm {Aut}^\circ (X) 由代数元组成,那么它是嵌套的,即是代数子群的直接极限。这改进了我们之前的结果(见 Perepechko 和 Regeta [Transform. Groups 28 (2023), pp.)为了证明这一点,我们得到以下事实。如果一个连通的吲哚群 G 包含一个封闭的连通嵌套吲哚子群 H ⊂ G H\subset G ,并且对于任意 g ∈ G g\in G,g 的某个正幂次属于 H H ,那么 G = H G=H 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphism groups of affine varieties consisting of algebraic elements

Given an affine algebraic variety X X , we prove that if the neutral component A u t ( X ) \mathrm {Aut}^\circ (X) of the automorphism group consists of algebraic elements, then it is nested, i.e., is a direct limit of algebraic subgroups. This improves our earlier result (see Perepechko and Regeta [Transform. Groups 28 (2023), pp. 401–412]). To prove it, we obtain the following fact. If a connected ind-group G G contains a closed connected nested ind-subgroup H G H\subset G , and for any g G g\in G some positive power of g g belongs to H H , then G = H G=H .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信