{"title":"𝐿-algebra 的质谱","authors":"Wolfgang Rump, Leandro Vendramin","doi":"10.1090/proc/16802","DOIUrl":null,"url":null,"abstract":"<p>We prove that the lattice of ideals of an arbitrary <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra is distributive. As a consequence, a spectral theory applies with no restriction. We also study the spectrum (i.e. the set of prime ideals) of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras and characterize prime ideals in topological terms.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The prime spectrum of an 𝐿-algebra\",\"authors\":\"Wolfgang Rump, Leandro Vendramin\",\"doi\":\"10.1090/proc/16802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the lattice of ideals of an arbitrary <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra is distributive. As a consequence, a spectral theory applies with no restriction. We also study the spectrum (i.e. the set of prime ideals) of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras and characterize prime ideals in topological terms.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了任意 L L -代数的理想晶格是可分配的。因此,谱理论的应用不受限制。我们还研究了 L L -代数的谱(即素理想集),并用拓扑术语描述了素理想的特征。
We prove that the lattice of ideals of an arbitrary LL-algebra is distributive. As a consequence, a spectral theory applies with no restriction. We also study the spectrum (i.e. the set of prime ideals) of LL-algebras and characterize prime ideals in topological terms.