非交换遍历定理注释

Pub Date : 2024-02-29 DOI:10.1090/proc/16807
Semyon Litvinov
{"title":"非交换遍历定理注释","authors":"Semyon Litvinov","doi":"10.1090/proc/16807","DOIUrl":null,"url":null,"abstract":"<p>Given a semifinite von Neumann algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equipped with a faithful normal semifinite trace <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that the spaces <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^0(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper R Subscript tau\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal R_\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are complete with respect to pointwise—almost uniform and bilaterally almost uniform—convergences in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^0(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 1 Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^1(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be extended to pointwise convergence of such nets in any fully symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E subset-of script upper R Subscript tau\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>⊂</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">E\\subset \\mathcal R_\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in particular, in any space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p Baseline left-parenthesis script upper M comma tau right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^p(\\mathcal M,\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1\\leq p&gt;\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Some applications of these results in the noncommutative ergodic theory are discussed.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on noncommutative ergodic theorems\",\"authors\":\"Semyon Litvinov\",\"doi\":\"10.1090/proc/16807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a semifinite von Neumann algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">M</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equipped with a faithful normal semifinite trace <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that the spaces <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L^0(\\\\mathcal M,\\\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper R Subscript tau\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal R_\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are complete with respect to pointwise—almost uniform and bilaterally almost uniform—convergences in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 0 Baseline left-parenthesis script upper M comma tau right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L^0(\\\\mathcal M,\\\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 1 Baseline left-parenthesis script upper M comma tau right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L^1(\\\\mathcal M,\\\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be extended to pointwise convergence of such nets in any fully symmetric space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E subset-of script upper R Subscript tau\\\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>⊂</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">R</mml:mi> </mml:mrow> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">E\\\\subset \\\\mathcal R_\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in particular, in any space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript p Baseline left-parenthesis script upper M comma tau right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L^p(\\\\mathcal M,\\\\tau )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 less-than-or-equal-to p greater-than normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">1\\\\leq p&gt;\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Some applications of these results in the noncommutative ergodic theory are discussed.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个半有穷冯-诺依曼代数 M (M \mathcal M)配有一个忠实的正态半有穷迹线 τ \tau,我们证明空间 L 0 ( M , τ ) L^0(\mathcal M,\tau ) 和 R τ \mathcal R_\tau 就 L 0 ( M , τ ) L^0(\mathcal M,\tau ) 中的点-几乎均匀和双边几乎均匀-转换而言是完备的。然后,我们证明在空间 L 1 ( M , τ ) L^1(\mathcal M., \tau ) 中线性算子网的一类特殊的 Pointwise Cauchy 属性可以扩展到 L 0 ( M , τ ) L^0(\mathcal M., \tau ) 中、\tau ) 可以扩展到在任何完全对称空间 E ⊂ R τ E\subset \mathcal R_\tau 中这类网的点收敛,特别是在任何空间 L p ( M , τ ) L^p(\mathcal M,\tau ) , 1 ≤ p >;∞ 1\leq p>\infty .讨论了这些结果在非交换遍历理论中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Notes on noncommutative ergodic theorems

Given a semifinite von Neumann algebra M \mathcal M equipped with a faithful normal semifinite trace τ \tau , we prove that the spaces L 0 ( M , τ ) L^0(\mathcal M,\tau ) and R τ \mathcal R_\tau are complete with respect to pointwise—almost uniform and bilaterally almost uniform—convergences in L 0 ( M , τ ) L^0(\mathcal M,\tau ) . Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space L 1 ( M , τ ) L^1(\mathcal M,\tau ) can be extended to pointwise convergence of such nets in any fully symmetric space E R τ E\subset \mathcal R_\tau , in particular, in any space L p ( M , τ ) L^p(\mathcal M,\tau ) , 1 p > 1\leq p>\infty . Some applications of these results in the noncommutative ergodic theory are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信