Proceedings of the American Mathematical Society最新文献

筛选
英文 中文
Log-concave polynomials III: Mason’s ultra-log-concavity conjecture for independent sets of matroids 对数凹多项式 III:梅森矩阵独立集的超对数凹猜想
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-20 DOI: 10.1090/proc/16724
Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant
{"title":"Log-concave polynomials III: Mason’s ultra-log-concavity conjecture for independent sets of matroids","authors":"Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant","doi":"10.1090/proc/16724","DOIUrl":"https://doi.org/10.1090/proc/16724","url":null,"abstract":"<p>We give a self-contained proof of the strongest version of Mason’s conjecture, namely that for any matroid the sequence of the number of independent sets of given sizes is ultra log-concave. To do this, we introduce a class of polynomials, called completely log-concave polynomials, whose bivariate restrictions have ultra log-concave coefficients. At the heart of our proof we show that for any matroid, the homogenization of the generating polynomial of its independent sets is completely log-concave.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sufficient conditions for a problem of Polya 波利亚问题的充分条件
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-13 DOI: 10.1090/proc/16826
Abhishek Bharadwaj, Aprameyo Pal, Veekesh Kumar, R. Thangadurai
{"title":"Sufficient conditions for a problem of Polya","authors":"Abhishek Bharadwaj, Aprameyo Pal, Veekesh Kumar, R. Thangadurai","doi":"10.1090/proc/16826","DOIUrl":"https://doi.org/10.1090/proc/16826","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding=\"application/x-tex\">alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a non-zero algebraic number. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Galois closure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis alpha right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}(alpha )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with Galois group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q overbar\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">bar {mathbb {Q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the algebraic closure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this article, among the other results, we prove the following. <italic>If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f element-of ModifyingAbove double-struck upper Q With bar left-bracket upper G right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">fin bar {mathbb {Q}}[G]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a non-zero element of the group ring <inline-formula conten","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invariant embeddings and weighted permutations 不变嵌入和加权排列
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-09 DOI: 10.1090/proc/16835
M. Mastnak, H. Radjavi
{"title":"Invariant embeddings and weighted permutations","authors":"M. Mastnak, H. Radjavi","doi":"10.1090/proc/16835","DOIUrl":"https://doi.org/10.1090/proc/16835","url":null,"abstract":"<p>We prove that for any fixed unitary matrix <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding=\"application/x-tex\">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, any abelian self-adjoint algebra of matrices that is invariant under conjugation by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding=\"application/x-tex\">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be embedded into a maximal abelian self-adjoint algebra that is still invariant under conjugation by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding=\"application/x-tex\">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We use this result to analyse the structure of matrices <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Superscript asterisk Baseline upper A\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A^*A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> commutes with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A upper A Superscript asterisk\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">AA^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and to characterize matrices that are unitarily equivalent to weighted permutations.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensor products and solutions to two homological conjectures for Ulrich modules 乌尔里希模块的张量积和两个同调猜想的解
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-09 DOI: 10.1090/proc/16838
Cleto Miranda-Neto, Thyago Souza
{"title":"Tensor products and solutions to two homological conjectures for Ulrich modules","authors":"Cleto Miranda-Neto, Thyago Souza","doi":"10.1090/proc/16838","DOIUrl":"https://doi.org/10.1090/proc/16838","url":null,"abstract":"<p>We address the problem of when the tensor product of two finitely generated modules over a Cohen-Macaulay local ring is Ulrich in the generalized sense of Goto et al., and in particular in the original sense from the 80’s. As applications, besides freeness criteria for modules, characterizations of complete intersections, and an Ulrich-based approach to the long-standing Berger’s conjecture, we give simple proofs that two celebrated homological conjectures, namely the Huneke-Wiegand and the Auslander-Reiten problems, are true for the class of Ulrich modules.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a conjecture of Stolz in the toric case 关于斯托尔兹在环状情况下的一个猜想
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-09 DOI: 10.1090/proc/16823
Michael Wiemeler
{"title":"On a conjecture of Stolz in the toric case","authors":"Michael Wiemeler","doi":"10.1090/proc/16823","DOIUrl":"https://doi.org/10.1090/proc/16823","url":null,"abstract":"<p>In 1996 Stolz [Math. Ann. 304 (1996), pp. 785–800] conjectured that a string manifold with positive Ricci curvature has vanishing Witten genus. Here we prove this conjecture for toric string Fano manifolds and for string torus manifolds admitting invariant metrics of non-negative sectional curvature.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pogorelov estimates for semi-convex solutions of 𝑘-curvature equations 𝑘曲率方程半凸解的波格雷洛夫估计值
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-09 DOI: 10.1090/proc/16820
Xiaojuan Chen, Qiang Tu, Ni Xiang
{"title":"Pogorelov estimates for semi-convex solutions of 𝑘-curvature equations","authors":"Xiaojuan Chen, Qiang Tu, Ni Xiang","doi":"10.1090/proc/16820","DOIUrl":"https://doi.org/10.1090/proc/16820","url":null,"abstract":"<p>In this paper, we consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-curvature equations <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma Subscript k Baseline left-parenthesis kappa left-bracket upper M Subscript u Baseline right-bracket right-parenthesis equals f left-parenthesis x comma u comma nabla u right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>κ</mml:mi> <mml:mo stretchy=\"false\">[</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>u</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇</mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">sigma _k(kappa [M_u])=f(x,u,nabla u)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> subject to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k plus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k+1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convex Dirichlet boundary data instead of affine Dirichlet data of Sheng, Urbas, and Wang [Duke Math. J. 123 (2004), pp. 235–264]. By using the crucial concavity inequality for Hessian operator of Lu [Calc. Var. Partial Differential Equations 62 (2023), p.23], we derive Pogorelov estimates of semi-convex admissible solutions for these <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-curvature equations.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A chromatic vanishing result for TR TR 的色度消失结果
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-09 DOI: 10.1090/proc/16840
Liam Keenan, Jonas McCandless
{"title":"A chromatic vanishing result for TR","authors":"Liam Keenan, Jonas McCandless","doi":"10.1090/proc/16840","DOIUrl":"https://doi.org/10.1090/proc/16840","url":null,"abstract":"<p>In this note, we establish a vanishing result for telescopically localized topological restriction homology TR. More precisely, we prove that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-local TR vanishes on connective <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript n Superscript p comma f\"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">L_n^{p,f}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-acyclic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper E 1\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">mathbb {E}_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rings for every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to k less-than-or-equal-to n\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>k</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1 leq k leq n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and deduce consequences for connective Morava K-theory and the Thom spectra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">y(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The proof relies on the relationship between TR and the spectrum of curves on K-theory together with fact that algebraic K-theory preserves infinite products of additive <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞</mml:mi> <mml:annotation encoding=\"application/x-tex\">infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories which was recently established by Córdova Fedeli [<italic>Topological Hochschild homology of adic rings</italic>, Ph.D. thesis, University of Copenhagen, 2023].</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On abelian cubic fields with large class number 关于大类数的非良性立方场
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-09 DOI: 10.1090/proc/16827
Jérémy Dousselin
{"title":"On abelian cubic fields with large class number","authors":"Jérémy Dousselin","doi":"10.1090/proc/16827","DOIUrl":"https://doi.org/10.1090/proc/16827","url":null,"abstract":"<p>We investigate the large values of class numbers of cubic fields, showing that one can find arbitrary long sequences of “close” abelian cubic number fields with class numbers as large as possible. We also give a first step toward an explicit lower bound for such extreme values of class numbers of abelian cubic fields.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The compact exceptional Lie algebra 𝔤^{𝔠}₂ as a twisted ring group 作为扭曲环群的紧凑异常李代数𝔤^{𝔠}₂
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-09 DOI: 10.1090/proc/16821
Cristina Draper
{"title":"The compact exceptional Lie algebra 𝔤^{𝔠}₂ as a twisted ring group","authors":"Cristina Draper","doi":"10.1090/proc/16821","DOIUrl":"https://doi.org/10.1090/proc/16821","url":null,"abstract":"<p>A new highly symmetrical model of the compact Lie algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g 2 Superscript c\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> <mml:mi>c</mml:mi> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">mathfrak {g}^c_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is provided as a twisted ring group for the group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z 2 cubed\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">mathbb {Z}_2^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R circled-plus double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>⊕</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {R}oplus mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The model is self-contained and can be used without previous knowledge on roots, derivations on octonions or cross products. In particular, it provides an orthogonal basis with integer structure constants, consisting entirely of semisimple elements, which is a generalization of the Pauli matrices in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German s German u left-parenthesis 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">s</mml:mi> <mml:mi mathvariant=\"fraktur\">u</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathfrak {su}(2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of the Gell-Mann matrices in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German s German u left-parenthesis 3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">s</mml:mi> <mml:mi mathvariant=\"fraktur\">u</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathfrak {su}(3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a bonus, the split Lie algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stability and shadowing of tree-shifts of finite type 论有限类型树状移动的稳定性和阴影
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-09 DOI: 10.1090/proc/16831
Dawid Bucki
{"title":"On the stability and shadowing of tree-shifts of finite type","authors":"Dawid Bucki","doi":"10.1090/proc/16831","DOIUrl":"https://doi.org/10.1090/proc/16831","url":null,"abstract":"<p>We investigate relations between the pseudo-orbit-tracing property, topological stability and openness for tree-shifts. We prove that a tree-shift is of finite type if and only if it has the pseudo-orbit-tracing property which implies that the tree-shift is topologically stable and all shift maps are open. We also present an example of a tree-shift for which all shift maps are open but which is not of finite type. It also turns out that if a topologically stable tree-shift does not have isolated points then it is of finite type.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信