{"title":"局部保角积流形上的适应度量","authors":"Andrei Moroianu, Mihaela Pilca","doi":"10.1090/proc/16706","DOIUrl":null,"url":null,"abstract":"<p>We show that the Gauduchon metric <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g 0\"> <mml:semantics> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">g_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a compact locally conformally product manifold <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M comma c comma upper D right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M,c,D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of dimension greater than <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is adapted, in the sense that the Lee form of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g 0\"> <mml:semantics> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">g_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> vanishes on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-flat distribution of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also characterize adapted metrics as critical points of a natural functional defined on the conformal class.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapted metrics on locally conformally product manifolds\",\"authors\":\"Andrei Moroianu, Mihaela Pilca\",\"doi\":\"10.1090/proc/16706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the Gauduchon metric <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g 0\\\"> <mml:semantics> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">g_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a compact locally conformally product manifold <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper M comma c comma upper D right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(M,c,D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of dimension greater than <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is adapted, in the sense that the Lee form of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g 0\\\"> <mml:semantics> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">g_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> vanishes on the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-flat distribution of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also characterize adapted metrics as critical points of a natural functional defined on the conformal class.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16706\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16706","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,维度大于 2 2 的紧凑局部保角积流形 ( M , c , D ) (M,c,D) 的高都松度量 g 0 g_0 是自适应的,即 D D 关于 g 0 g_0 的李形式在 M M 的 D D 平面分布上消失。我们还将适配度量描述为定义在共形类上的自然函数的临界点。
Adapted metrics on locally conformally product manifolds
We show that the Gauduchon metric g0g_0 of a compact locally conformally product manifold (M,c,D)(M,c,D) of dimension greater than 22 is adapted, in the sense that the Lee form of DD with respect to g0g_0 vanishes on the DD-flat distribution of MM. We also characterize adapted metrics as critical points of a natural functional defined on the conformal class.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.