{"title":"On weak solutions to the kinetic Cucker–Smale model with singular communication weights","authors":"Young-Pil Choi, Jinwook Jung","doi":"10.1090/proc/16837","DOIUrl":null,"url":null,"abstract":"<p>We establish the local-in-time existence of weak solutions to the kinetic Cucker–Smale model with singular communication weights <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi left-parenthesis x right-parenthesis equals StartAbsoluteValue x EndAbsoluteValue Superscript negative alpha\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\phi (x) = |x|^{-\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha element-of left-parenthesis 0 comma d right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha \\in (0,d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha element-of left-parenthesis 0 comma d minus 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha \\in (0, d-1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we also provide the uniqueness of weak solutions extending the work of Carrillo et al [MMCS, ESAIM Proc. Surveys, vol. 47, EDP Sci., Les Ulis, 2014, pp. 17–35] where the existence and uniqueness of weak solutions are studied for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha element-of left-parenthesis 0 comma d minus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha \\in (0,d-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We establish the local-in-time existence of weak solutions to the kinetic Cucker–Smale model with singular communication weights ϕ(x)=|x|−α\phi (x) = |x|^{-\alpha } with α∈(0,d)\alpha \in (0,d). In the case α∈(0,d−1]\alpha \in (0, d-1], we also provide the uniqueness of weak solutions extending the work of Carrillo et al [MMCS, ESAIM Proc. Surveys, vol. 47, EDP Sci., Les Ulis, 2014, pp. 17–35] where the existence and uniqueness of weak solutions are studied for α∈(0,d−1)\alpha \in (0,d-1).