{"title":"有限拓扑类型表面上的组合卡拉比流","authors":"Shengyu Li, Qianghua Luo, Yaping Xu","doi":"10.1090/proc/16839","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the combinatorial Calabi flow for circle patterns with obtuse exterior intersection angles on surfaces of finite topological type. By using a Lyapunov function, we show that the flow exists for all time and converges exponentially fast to a circle pattern metric with prescribed attainable curvatures. This provides an algorithm to search for the desired circle patterns.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial Calabi flow on surfaces of finite topological type\",\"authors\":\"Shengyu Li, Qianghua Luo, Yaping Xu\",\"doi\":\"10.1090/proc/16839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the combinatorial Calabi flow for circle patterns with obtuse exterior intersection angles on surfaces of finite topological type. By using a Lyapunov function, we show that the flow exists for all time and converges exponentially fast to a circle pattern metric with prescribed attainable curvatures. This provides an algorithm to search for the desired circle patterns.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16839\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16839","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Combinatorial Calabi flow on surfaces of finite topological type
This paper studies the combinatorial Calabi flow for circle patterns with obtuse exterior intersection angles on surfaces of finite topological type. By using a Lyapunov function, we show that the flow exists for all time and converges exponentially fast to a circle pattern metric with prescribed attainable curvatures. This provides an algorithm to search for the desired circle patterns.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.