Hölder regularity of solutions and physical quantities for the ideal electron magnetohydrodynamic equations

IF 0.8 3区 数学 Q2 MATHEMATICS
Yanqing Wang, Jitao Liu, Guoliang He
{"title":"Hölder regularity of solutions and physical quantities for the ideal electron magnetohydrodynamic equations","authors":"Yanqing Wang, Jitao Liu, Guoliang He","doi":"10.1090/proc/16829","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we make the first attempt to <italic>figure out</italic> the differences on Hölder regularity in time of solutions and conserved physical quantities between the ideal electron magnetohydrodynamic equations concerning Hall term and the incompressible Euler equations involving convection term. It is shown that the regularity in time of magnetic field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction alpha Over 2 EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {\\alpha }2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> provided it belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline upper C Subscript x Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } C_{x}^{\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, its energy is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction 2 alpha Over 2 minus alpha EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {2\\alpha }{2-\\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as long as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper B With dot Subscript 3 comma normal infinity Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } \\dot {B}^{\\alpha }_{3,\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0&gt;\\alpha &gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and its magnetic helicity is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction 2 alpha plus 1 Over 2 minus alpha EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {2\\alpha +1}{2-\\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> supposing <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper B With dot Subscript 3 comma normal infinity Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } \\dot {B}^{\\alpha }_{3,\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha greater-than one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0&gt;\\alpha &gt;\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which are quite different from the classical incompressible Euler equations.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"192 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16829","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we make the first attempt to figure out the differences on Hölder regularity in time of solutions and conserved physical quantities between the ideal electron magnetohydrodynamic equations concerning Hall term and the incompressible Euler equations involving convection term. It is shown that the regularity in time of magnetic field B B is C t α 2 C_{t}^{\frac {\alpha }2} provided it belongs to L t C x α L_{t}^{\infty } C_{x}^{\alpha } for any α > 0 \alpha >0 , its energy is C t 2 α 2 α C_{t}^{\frac {2\alpha }{2-\alpha }} as long as B B belongs to L t B ˙ 3 , α L_{t}^{\infty } \dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 0>\alpha >1 and its magnetic helicity is C t 2 α + 1 2 α C_{t}^{\frac {2\alpha +1}{2-\alpha }} supposing B B belongs to L t B ˙ 3 , α L_{t}^{\infty } \dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 2 0>\alpha >\frac 12 , which are quite different from the classical incompressible Euler equations.

理想电子磁流体动力学方程的霍尔德正则解和物理量
在本文中,我们首次尝试找出涉及霍尔项的理想电子磁流体动力学方程与涉及对流项的不可压缩欧拉方程在解的时间霍尔德正则性和守恒物理量上的差异。研究表明,磁场 B B 的时间正则性为 C t α 2 C_{t}^{frac {\alpha }2} ,条件是它属于 L t ∞ C x α L_{t}^{\infty }。C_{x}^{alpha } for any α > 0 \alpha >0 , its energy is C t 2 α 2 - α C_{t}^{frac {2alpha }{2-\alpha }} as long as B B belongs to L t ∞ B ˙ 3 , ∞ α L_{t}^{\infty }\dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 0>\alpha >;1 ,其磁螺旋度为 C t 2 α + 1 2 - α C_{t}^{frac {2\alpha +1}{2-\alpha }},假设 B B 属于 L t ∞ B ˙ 3 ,∞ α L_{t}^\{infty }。\dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 2 0>\alpha >\frac 12 , 这与经典的不可压缩欧拉方程完全不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信