{"title":"Hölder regularity of solutions and physical quantities for the ideal electron magnetohydrodynamic equations","authors":"Yanqing Wang, Jitao Liu, Guoliang He","doi":"10.1090/proc/16829","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we make the first attempt to <italic>figure out</italic> the differences on Hölder regularity in time of solutions and conserved physical quantities between the ideal electron magnetohydrodynamic equations concerning Hall term and the incompressible Euler equations involving convection term. It is shown that the regularity in time of magnetic field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction alpha Over 2 EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {\\alpha }2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> provided it belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline upper C Subscript x Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } C_{x}^{\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, its energy is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction 2 alpha Over 2 minus alpha EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {2\\alpha }{2-\\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as long as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper B With dot Subscript 3 comma normal infinity Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } \\dot {B}^{\\alpha }_{3,\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0>\\alpha >1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and its magnetic helicity is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction 2 alpha plus 1 Over 2 minus alpha EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {2\\alpha +1}{2-\\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> supposing <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper B With dot Subscript 3 comma normal infinity Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } \\dot {B}^{\\alpha }_{3,\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha greater-than one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0>\\alpha >\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which are quite different from the classical incompressible Euler equations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we make the first attempt to figure out the differences on Hölder regularity in time of solutions and conserved physical quantities between the ideal electron magnetohydrodynamic equations concerning Hall term and the incompressible Euler equations involving convection term. It is shown that the regularity in time of magnetic field BB is Ctα2C_{t}^{\frac {\alpha }2} provided it belongs to Lt∞CxαL_{t}^{\infty } C_{x}^{\alpha } for any α>0\alpha >0, its energy is Ct2α2−αC_{t}^{\frac {2\alpha }{2-\alpha }} as long as BB belongs to Lt∞B˙3,∞αL_{t}^{\infty } \dot {B}^{\alpha }_{3,\infty } for any 0>α>10>\alpha >1 and its magnetic helicity is Ct2α+12−αC_{t}^{\frac {2\alpha +1}{2-\alpha }} supposing BB belongs to Lt∞B˙3,∞αL_{t}^{\infty } \dot {B}^{\alpha }_{3,\infty } for any 0>α>120>\alpha >\frac 12, which are quite different from the classical incompressible Euler equations.
在本文中,我们首次尝试找出涉及霍尔项的理想电子磁流体动力学方程与涉及对流项的不可压缩欧拉方程在解的时间霍尔德正则性和守恒物理量上的差异。研究表明,磁场 B B 的时间正则性为 C t α 2 C_{t}^{frac {\alpha }2} ,条件是它属于 L t ∞ C x α L_{t}^{\infty }。C_{x}^{alpha } for any α > 0 \alpha >0 , its energy is C t 2 α 2 - α C_{t}^{frac {2alpha }{2-\alpha }} as long as B B belongs to L t ∞ B ˙ 3 , ∞ α L_{t}^{\infty }\dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 0>\alpha >;1 ,其磁螺旋度为 C t 2 α + 1 2 - α C_{t}^{frac {2\alpha +1}{2-\alpha }},假设 B B 属于 L t ∞ B ˙ 3 ,∞ α L_{t}^\{infty }。\dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 2 0>\alpha >\frac 12 , 这与经典的不可压缩欧拉方程完全不同。