关于具有奇异通信权重的动力学卡克-斯马尔模型的弱解

Pub Date : 2024-03-09 DOI:10.1090/proc/16837
Young-Pil Choi, Jinwook Jung
{"title":"关于具有奇异通信权重的动力学卡克-斯马尔模型的弱解","authors":"Young-Pil Choi, Jinwook Jung","doi":"10.1090/proc/16837","DOIUrl":null,"url":null,"abstract":"<p>We establish the local-in-time existence of weak solutions to the kinetic Cucker–Smale model with singular communication weights <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi left-parenthesis x right-parenthesis equals StartAbsoluteValue x EndAbsoluteValue Superscript negative alpha\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\phi (x) = |x|^{-\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha element-of left-parenthesis 0 comma d right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha \\in (0,d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha element-of left-parenthesis 0 comma d minus 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha \\in (0, d-1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we also provide the uniqueness of weak solutions extending the work of Carrillo et al [MMCS, ESAIM Proc. Surveys, vol. 47, EDP Sci., Les Ulis, 2014, pp. 17–35] where the existence and uniqueness of weak solutions are studied for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha element-of left-parenthesis 0 comma d minus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha \\in (0,d-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On weak solutions to the kinetic Cucker–Smale model with singular communication weights\",\"authors\":\"Young-Pil Choi, Jinwook Jung\",\"doi\":\"10.1090/proc/16837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish the local-in-time existence of weak solutions to the kinetic Cucker–Smale model with singular communication weights <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi left-parenthesis x right-parenthesis equals StartAbsoluteValue x EndAbsoluteValue Superscript negative alpha\\\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\phi (x) = |x|^{-\\\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha element-of left-parenthesis 0 comma d right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha \\\\in (0,d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the case <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha element-of left-parenthesis 0 comma d minus 1 right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha \\\\in (0, d-1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we also provide the uniqueness of weak solutions extending the work of Carrillo et al [MMCS, ESAIM Proc. Surveys, vol. 47, EDP Sci., Les Ulis, 2014, pp. 17–35] where the existence and uniqueness of weak solutions are studied for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha element-of left-parenthesis 0 comma d minus 1 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha \\\\in (0,d-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了具有奇异通信权重 ϕ ( x ) = | x | - α \phi (x) = |x|^{-\alpha } 且 α ∈ ( 0 , d ) \alpha \ in (0,d) 的动力学 Cucker-Smale 模型弱解的局部时间内存在性。在 α∈ ( 0 , d - 1 ] 的情况下 \(0, d-1] . 我们还提供了弱解的唯一性,扩展了 Carrillo 等人的工作[MMCS, ESAIM Proc. Surveys, vol. 47, EDP Sci., Les Ulis, 2014, pp.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On weak solutions to the kinetic Cucker–Smale model with singular communication weights

We establish the local-in-time existence of weak solutions to the kinetic Cucker–Smale model with singular communication weights ϕ ( x ) = | x | α \phi (x) = |x|^{-\alpha } with α ( 0 , d ) \alpha \in (0,d) . In the case α ( 0 , d 1 ] \alpha \in (0, d-1] , we also provide the uniqueness of weak solutions extending the work of Carrillo et al [MMCS, ESAIM Proc. Surveys, vol. 47, EDP Sci., Les Ulis, 2014, pp. 17–35] where the existence and uniqueness of weak solutions are studied for α ( 0 , d 1 ) \alpha \in (0,d-1) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信