理想电子磁流体动力学方程的霍尔德正则解和物理量

Pub Date : 2024-03-09 DOI:10.1090/proc/16829
Yanqing Wang, Jitao Liu, Guoliang He
{"title":"理想电子磁流体动力学方程的霍尔德正则解和物理量","authors":"Yanqing Wang, Jitao Liu, Guoliang He","doi":"10.1090/proc/16829","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we make the first attempt to <italic>figure out</italic> the differences on Hölder regularity in time of solutions and conserved physical quantities between the ideal electron magnetohydrodynamic equations concerning Hall term and the incompressible Euler equations involving convection term. It is shown that the regularity in time of magnetic field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction alpha Over 2 EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {\\alpha }2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> provided it belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline upper C Subscript x Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } C_{x}^{\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, its energy is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction 2 alpha Over 2 minus alpha EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {2\\alpha }{2-\\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as long as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper B With dot Subscript 3 comma normal infinity Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } \\dot {B}^{\\alpha }_{3,\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0&gt;\\alpha &gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and its magnetic helicity is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript t Superscript StartFraction 2 alpha plus 1 Over 2 minus alpha EndFraction\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">C_{t}^{\\frac {2\\alpha +1}{2-\\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> supposing <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper B With dot Subscript 3 comma normal infinity Superscript alpha\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{t}^{\\infty } \\dot {B}^{\\alpha }_{3,\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha greater-than one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0&gt;\\alpha &gt;\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which are quite different from the classical incompressible Euler equations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hölder regularity of solutions and physical quantities for the ideal electron magnetohydrodynamic equations\",\"authors\":\"Yanqing Wang, Jitao Liu, Guoliang He\",\"doi\":\"10.1090/proc/16829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we make the first attempt to <italic>figure out</italic> the differences on Hölder regularity in time of solutions and conserved physical quantities between the ideal electron magnetohydrodynamic equations concerning Hall term and the incompressible Euler equations involving convection term. It is shown that the regularity in time of magnetic field <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript t Superscript StartFraction alpha Over 2 EndFraction\\\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">C_{t}^{\\\\frac {\\\\alpha }2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> provided it belongs to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript t Superscript normal infinity Baseline upper C Subscript x Superscript alpha\\\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L_{t}^{\\\\infty } C_{x}^{\\\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, its energy is <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript t Superscript StartFraction 2 alpha Over 2 minus alpha EndFraction\\\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">C_{t}^{\\\\frac {2\\\\alpha }{2-\\\\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as long as <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper B With dot Subscript 3 comma normal infinity Superscript alpha\\\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L_{t}^{\\\\infty } \\\\dot {B}^{\\\\alpha }_{3,\\\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than alpha greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">0&gt;\\\\alpha &gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and its magnetic helicity is <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript t Superscript StartFraction 2 alpha plus 1 Over 2 minus alpha EndFraction\\\"> <mml:semantics> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">C_{t}^{\\\\frac {2\\\\alpha +1}{2-\\\\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> supposing <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper B With dot Subscript 3 comma normal infinity Superscript alpha\\\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L_{t}^{\\\\infty } \\\\dot {B}^{\\\\alpha }_{3,\\\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than alpha greater-than one half\\\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">0&gt;\\\\alpha &gt;\\\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which are quite different from the classical incompressible Euler equations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首次尝试找出涉及霍尔项的理想电子磁流体动力学方程与涉及对流项的不可压缩欧拉方程在解的时间霍尔德正则性和守恒物理量上的差异。研究表明,磁场 B B 的时间正则性为 C t α 2 C_{t}^{frac {\alpha }2} ,条件是它属于 L t ∞ C x α L_{t}^{\infty }。C_{x}^{alpha } for any α > 0 \alpha >0 , its energy is C t 2 α 2 - α C_{t}^{frac {2alpha }{2-\alpha }} as long as B B belongs to L t ∞ B ˙ 3 , ∞ α L_{t}^{\infty }\dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 0>\alpha >;1 ,其磁螺旋度为 C t 2 α + 1 2 - α C_{t}^{frac {2\alpha +1}{2-\alpha }},假设 B B 属于 L t ∞ B ˙ 3 ,∞ α L_{t}^\{infty }。\dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 2 0>\alpha >\frac 12 , 这与经典的不可压缩欧拉方程完全不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hölder regularity of solutions and physical quantities for the ideal electron magnetohydrodynamic equations

In this paper, we make the first attempt to figure out the differences on Hölder regularity in time of solutions and conserved physical quantities between the ideal electron magnetohydrodynamic equations concerning Hall term and the incompressible Euler equations involving convection term. It is shown that the regularity in time of magnetic field B B is C t α 2 C_{t}^{\frac {\alpha }2} provided it belongs to L t C x α L_{t}^{\infty } C_{x}^{\alpha } for any α > 0 \alpha >0 , its energy is C t 2 α 2 α C_{t}^{\frac {2\alpha }{2-\alpha }} as long as B B belongs to L t B ˙ 3 , α L_{t}^{\infty } \dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 0>\alpha >1 and its magnetic helicity is C t 2 α + 1 2 α C_{t}^{\frac {2\alpha +1}{2-\alpha }} supposing B B belongs to L t B ˙ 3 , α L_{t}^{\infty } \dot {B}^{\alpha }_{3,\infty } for any 0 > α > 1 2 0>\alpha >\frac 12 , which are quite different from the classical incompressible Euler equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信