{"title":"论有限类型树状移动的稳定性和阴影","authors":"Dawid Bucki","doi":"10.1090/proc/16831","DOIUrl":null,"url":null,"abstract":"<p>We investigate relations between the pseudo-orbit-tracing property, topological stability and openness for tree-shifts. We prove that a tree-shift is of finite type if and only if it has the pseudo-orbit-tracing property which implies that the tree-shift is topologically stable and all shift maps are open. We also present an example of a tree-shift for which all shift maps are open but which is not of finite type. It also turns out that if a topologically stable tree-shift does not have isolated points then it is of finite type.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"28 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stability and shadowing of tree-shifts of finite type\",\"authors\":\"Dawid Bucki\",\"doi\":\"10.1090/proc/16831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate relations between the pseudo-orbit-tracing property, topological stability and openness for tree-shifts. We prove that a tree-shift is of finite type if and only if it has the pseudo-orbit-tracing property which implies that the tree-shift is topologically stable and all shift maps are open. We also present an example of a tree-shift for which all shift maps are open but which is not of finite type. It also turns out that if a topologically stable tree-shift does not have isolated points then it is of finite type.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16831\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16831","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the stability and shadowing of tree-shifts of finite type
We investigate relations between the pseudo-orbit-tracing property, topological stability and openness for tree-shifts. We prove that a tree-shift is of finite type if and only if it has the pseudo-orbit-tracing property which implies that the tree-shift is topologically stable and all shift maps are open. We also present an example of a tree-shift for which all shift maps are open but which is not of finite type. It also turns out that if a topologically stable tree-shift does not have isolated points then it is of finite type.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.