Nikolay Bazhenov, Alexander Melnikov, Keng Meng Ng
{"title":"每个 Δ⁰₂ 波兰空间都是可计算的拓扑空间。","authors":"Nikolay Bazhenov, Alexander Melnikov, Keng Meng Ng","doi":"10.1090/proc/16797","DOIUrl":null,"url":null,"abstract":"<p>We show that every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta 2 Superscript 0\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mn>2</mml:mn> <mml:mn>0</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Delta ^0_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Polish space admits a computable topological presentation given by an effective indexing of some non-empty open sets in the space.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Every Δ⁰₂ Polish space is computable topological\",\"authors\":\"Nikolay Bazhenov, Alexander Melnikov, Keng Meng Ng\",\"doi\":\"10.1090/proc/16797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that every <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta 2 Superscript 0\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mn>2</mml:mn> <mml:mn>0</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta ^0_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Polish space admits a computable topological presentation given by an effective indexing of some non-empty open sets in the space.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16797\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16797","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that every Δ20\Delta ^0_2 Polish space admits a computable topological presentation given by an effective indexing of some non-empty open sets in the space.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.