{"title":"奇点范畴的非消失结果","authors":"Xiao-Wu Chen, Zhi-Wei Li, Xiaojin Zhang, Zhibing Zhao","doi":"10.1090/proc/16898","DOIUrl":null,"url":null,"abstract":"<p>We prove that a virtually periodic object in an abelian category gives rise to a non-vanishing result on certain Hom groups in the singularity category. Consequently, for any artin algebra with infinite global dimension, its singularity category has no silting subcategory, and the associated differential graded Leavitt algebra has a non-vanishing cohomology in each degree. We verify the Singular Presilting Conjecture for singularly-minimal algebras and ultimately-closed algebras. We obtain a trichotomy on the Hom-finiteness of the cohomologies of differential graded Leavitt algebras.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"36 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-vanishing result on the singularity category\",\"authors\":\"Xiao-Wu Chen, Zhi-Wei Li, Xiaojin Zhang, Zhibing Zhao\",\"doi\":\"10.1090/proc/16898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that a virtually periodic object in an abelian category gives rise to a non-vanishing result on certain Hom groups in the singularity category. Consequently, for any artin algebra with infinite global dimension, its singularity category has no silting subcategory, and the associated differential graded Leavitt algebra has a non-vanishing cohomology in each degree. We verify the Singular Presilting Conjecture for singularly-minimal algebras and ultimately-closed algebras. We obtain a trichotomy on the Hom-finiteness of the cohomologies of differential graded Leavitt algebras.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16898\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16898","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,在一个无性范畴中,一个几乎周期性的对象会引起奇点范畴中某些 Hom 群的非消失结果。因此,对于任何具有无限全维的artin代数,其奇点范畴都没有淤积子范畴,相关的微分级联Leavitt代数在每个度上都有一个非消失的同调。我们验证了奇异极小代数和最终封闭代数的奇异预ilting 猜想。我们得到了关于微分级联利维特代数的同调的 Hom-finiteness 的三分法。
A non-vanishing result on the singularity category
We prove that a virtually periodic object in an abelian category gives rise to a non-vanishing result on certain Hom groups in the singularity category. Consequently, for any artin algebra with infinite global dimension, its singularity category has no silting subcategory, and the associated differential graded Leavitt algebra has a non-vanishing cohomology in each degree. We verify the Singular Presilting Conjecture for singularly-minimal algebras and ultimately-closed algebras. We obtain a trichotomy on the Hom-finiteness of the cohomologies of differential graded Leavitt algebras.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.