On word complexity and topological entropy of random substitution subshifts

Pub Date : 2024-05-01 DOI:10.1090/proc/16893
Andrew Mitchell
{"title":"On word complexity and topological entropy of random substitution subshifts","authors":"Andrew Mitchell","doi":"10.1090/proc/16893","DOIUrl":null,"url":null,"abstract":"<p>We consider word complexity and topological entropy for random substitution subshifts. In contrast to previous work, we do not assume that the underlying random substitution is compatible. We show that the subshift of a primitive random substitution has zero topological entropy if and only if it can be obtained as the subshift of a deterministic substitution, answering in the affirmative an open question of Rust and Spindeler [Indag. Math. (N.S.) 29 (2018), pp. 1131–1155]. For constant length primitive random substitutions, we develop a systematic approach to calculating the topological entropy of the associated subshift. Further, we prove lower and upper bounds that hold even without primitivity. For subshifts of non-primitive random substitutions, we show that the complexity function can exhibit features not possible in the deterministic or primitive random setting, such as intermediate growth, and provide a partial classification of the permissible complexity functions for subshifts of constant length random substitutions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider word complexity and topological entropy for random substitution subshifts. In contrast to previous work, we do not assume that the underlying random substitution is compatible. We show that the subshift of a primitive random substitution has zero topological entropy if and only if it can be obtained as the subshift of a deterministic substitution, answering in the affirmative an open question of Rust and Spindeler [Indag. Math. (N.S.) 29 (2018), pp. 1131–1155]. For constant length primitive random substitutions, we develop a systematic approach to calculating the topological entropy of the associated subshift. Further, we prove lower and upper bounds that hold even without primitivity. For subshifts of non-primitive random substitutions, we show that the complexity function can exhibit features not possible in the deterministic or primitive random setting, such as intermediate growth, and provide a partial classification of the permissible complexity functions for subshifts of constant length random substitutions.

分享
查看原文
论随机置换子移位的字复杂度和拓扑熵
我们考虑了随机替换子变换的词复杂度和拓扑熵。与以往的研究不同,我们不假定底层随机置换是兼容的。我们证明,当且仅当原始随机置换的子移位可以作为确定性置换的子移位得到时,它的拓扑熵为零,从而肯定地回答了 Rust 和 Spindeler 的一个开放问题[Indag. Math. (N.S.) 29 (2018), pp.1131-1155]。对于恒定长度的原始随机替换,我们开发了一种计算相关子移位拓扑熵的系统方法。此外,我们还证明了即使没有基元性也成立的下限和上限。对于非原始随机置换的子移位,我们证明了复杂度函数可以表现出确定性或原始随机设置中不可能出现的特征,如中间增长,并提供了恒定长度随机置换的子移位所允许的复杂度函数的部分分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信