{"title":"估计牛顿势算子的特征值和特征函数积分","authors":"Abdulaziz Alsenafi, Ahcene Ghandriche, Mourad Sini","doi":"10.1090/proc/16871","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega subset-of double-struck upper R Superscript d\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Omega \\subset \\mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 2 comma 3\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d=2,3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of the maximum radius of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the presence of small scaled and highly heterogeneous particles.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"68 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the eigenvalues and the integral of the eigenfunctions of the Newtonian potential operator\",\"authors\":\"Abdulaziz Alsenafi, Ahcene Ghandriche, Mourad Sini\",\"doi\":\"10.1090/proc/16871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega subset-of double-struck upper R Superscript d\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">Ω</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega \\\\subset \\\\mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d equals 2 comma 3\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">d=2,3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of the maximum radius of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Ω</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript d\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the presence of small scaled and highly heterogeneous particles.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16871\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16871","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的问题是估计与牛顿势算子相关的特征值和相应特征函数的积分,牛顿势算子定义在一个有界域 Ω ⊂ R d \Omega \子集 \mathbb {R}^{d} 中,其中 d = 2 , 3 d=2,3 ,用 Ω \Omega 的最大半径表示。我们首先在球和圆盘的特殊情况下提供这些估计值。然后,我们利用牛顿算子特征值的单调性特性,将其扩展到一般形状。对于二维对数势算子,下限的推导相当繁琐。在估算小尺度和高度异质粒子在 R d \mathbb {R}^{d} 中传播的电场/声场时,这种上界/下界会自然出现。
Estimation of the eigenvalues and the integral of the eigenfunctions of the Newtonian potential operator
We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain Ω⊂Rd\Omega \subset \mathbb {R}^{d}, where d=2,3d=2,3, in terms of the maximum radius of Ω\Omega. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in Rd\mathbb {R}^{d} in the presence of small scaled and highly heterogeneous particles.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.