Estimation of the eigenvalues and the integral of the eigenfunctions of the Newtonian potential operator

Pub Date : 2024-05-01 DOI:10.1090/proc/16871
Abdulaziz Alsenafi, Ahcene Ghandriche, Mourad Sini
{"title":"Estimation of the eigenvalues and the integral of the eigenfunctions of the Newtonian potential operator","authors":"Abdulaziz Alsenafi, Ahcene Ghandriche, Mourad Sini","doi":"10.1090/proc/16871","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega subset-of double-struck upper R Superscript d\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Omega \\subset \\mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 2 comma 3\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d=2,3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of the maximum radius of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the presence of small scaled and highly heterogeneous particles.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain Ω R d \Omega \subset \mathbb {R}^{d} , where d = 2 , 3 d=2,3 , in terms of the maximum radius of Ω \Omega . We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in R d \mathbb {R}^{d} in the presence of small scaled and highly heterogeneous particles.

分享
查看原文
估计牛顿势算子的特征值和特征函数积分
我们考虑的问题是估计与牛顿势算子相关的特征值和相应特征函数的积分,牛顿势算子定义在一个有界域 Ω ⊂ R d \Omega \子集 \mathbb {R}^{d} 中,其中 d = 2 , 3 d=2,3 ,用 Ω \Omega 的最大半径表示。我们首先在球和圆盘的特殊情况下提供这些估计值。然后,我们利用牛顿算子特征值的单调性特性,将其扩展到一般形状。对于二维对数势算子,下限的推导相当繁琐。在估算小尺度和高度异质粒子在 R d \mathbb {R}^{d} 中传播的电场/声场时,这种上界/下界会自然出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信