{"title":"Estimation of the eigenvalues and the integral of the eigenfunctions of the Newtonian potential operator","authors":"Abdulaziz Alsenafi, Ahcene Ghandriche, Mourad Sini","doi":"10.1090/proc/16871","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega subset-of double-struck upper R Superscript d\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Omega \\subset \\mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 2 comma 3\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d=2,3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of the maximum radius of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the presence of small scaled and highly heterogeneous particles.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain Ω⊂Rd\Omega \subset \mathbb {R}^{d}, where d=2,3d=2,3, in terms of the maximum radius of Ω\Omega. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in Rd\mathbb {R}^{d} in the presence of small scaled and highly heterogeneous particles.
我们考虑的问题是估计与牛顿势算子相关的特征值和相应特征函数的积分,牛顿势算子定义在一个有界域 Ω ⊂ R d \Omega \子集 \mathbb {R}^{d} 中,其中 d = 2 , 3 d=2,3 ,用 Ω \Omega 的最大半径表示。我们首先在球和圆盘的特殊情况下提供这些估计值。然后,我们利用牛顿算子特征值的单调性特性,将其扩展到一般形状。对于二维对数势算子,下限的推导相当繁琐。在估算小尺度和高度异质粒子在 R d \mathbb {R}^{d} 中传播的电场/声场时,这种上界/下界会自然出现。