Kohler-Jobin meets Ehrhard: The sharp lower bound for the Gaussian principal frequency while the Gaussian torsional rigidity is fixed, via rearrangements

Pub Date : 2024-05-01 DOI:10.1090/proc/16889
Orli Herscovici, Galyna Livshyts
{"title":"Kohler-Jobin meets Ehrhard: The sharp lower bound for the Gaussian principal frequency while the Gaussian torsional rigidity is fixed, via rearrangements","authors":"Orli Herscovici, Galyna Livshyts","doi":"10.1090/proc/16889","DOIUrl":null,"url":null,"abstract":"<p>In this note, we provide an adaptation of the Kohler-Jobin rearrangement technique to the setting of the Gauss space. As a result, we prove the Gaussian analogue of the Kohler-Jobin resolution of a conjecture of Pólya-Szegö: when the Gaussian torsional rigidity of a domain is fixed, the Gaussian principal frequency is minimized for the half-space. At the core of this rearrangement technique is the idea of considering a “modified” torsional rigidity, with respect to a given function, and rearranging its layers to half-spaces, in a particular way; the Rayleigh quotient decreases with this procedure.</p> <p>We emphasize that the analogy of the Gaussian case with the Lebesgue case is not to be expected here, as in addition to some soft symmetrization ideas, the argument relies on the properties of some special functions; the fact that this analogy does hold is somewhat of a miracle.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we provide an adaptation of the Kohler-Jobin rearrangement technique to the setting of the Gauss space. As a result, we prove the Gaussian analogue of the Kohler-Jobin resolution of a conjecture of Pólya-Szegö: when the Gaussian torsional rigidity of a domain is fixed, the Gaussian principal frequency is minimized for the half-space. At the core of this rearrangement technique is the idea of considering a “modified” torsional rigidity, with respect to a given function, and rearranging its layers to half-spaces, in a particular way; the Rayleigh quotient decreases with this procedure.

We emphasize that the analogy of the Gaussian case with the Lebesgue case is not to be expected here, as in addition to some soft symmetrization ideas, the argument relies on the properties of some special functions; the fact that this analogy does hold is somewhat of a miracle.

分享
查看原文
科勒-约宾与艾哈德:在高斯扭转刚度固定的情况下,通过重排求得高斯主频的尖锐下限
在本论文中,我们将科勒-约宾重排技术应用于高斯空间。因此,我们证明了波利亚-塞戈(Pólya-Szegö)猜想的科勒-约宾(Kohler-Jobin)解析的高斯类比:当域的高斯扭转刚度固定时,半空间的高斯主频最小。这种重新排列技术的核心思想是,针对给定函数考虑 "修正 "的扭转刚度,并以特定方式将其各层重新排列为半空间。我们要强调的是,高斯情况与 Lebesgue 情况的类比在这里并不值得期待,因为除了一些软对称性思想之外,论证还依赖于一些特殊函数的性质;这种类比确实成立的事实在某种程度上是一个奇迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信