具有简单李群的非还原对称空间上的不变连接

IF 0.8 3区 数学 Q2 MATHEMATICS
Othmane Dani, Abdelhak Abouqateb, Saïd Benayadi
{"title":"具有简单李群的非还原对称空间上的不变连接","authors":"Othmane Dani, Abdelhak Abouqateb, Saïd Benayadi","doi":"10.1090/proc/16903","DOIUrl":null,"url":null,"abstract":"<p>Consider a symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with simple Lie group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We demonstrate that when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not irreducible, it is necessarily even dimensional and noncompact. Furthermore, the subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also both noncompact and non-semisimple. Additionally, we establish that the only <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant connection on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the canonical connection. On the other hand, we show that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has an odd dimension, it must be irreducible, and the subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be semisimple. Finally, we present an explicit example, and we show that there exists no other torsion-free <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant connection on a symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with semisimple Lie group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which has the same curvature as the canonical one.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant connections on non-irreducible symmetric spaces with simple Lie group\",\"authors\":\"Othmane Dani, Abdelhak Abouqateb, Saïd Benayadi\",\"doi\":\"10.1090/proc/16903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a symmetric space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G slash upper H\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with simple Lie group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We demonstrate that when <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G slash upper H\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not irreducible, it is necessarily even dimensional and noncompact. Furthermore, the subgroup <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also both noncompact and non-semisimple. Additionally, we establish that the only <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant connection on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G slash upper H\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the canonical connection. On the other hand, we show that if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G slash upper H\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has an odd dimension, it must be irreducible, and the subgroup <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be semisimple. Finally, we present an explicit example, and we show that there exists no other torsion-free <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant connection on a symmetric space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G slash upper H\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with semisimple Lie group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which has the same curvature as the canonical one.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16903\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16903","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑具有简单李群 G G 的对称空间 G / H G/H 。我们证明,当 G / H G/H 不是不可还原时,它必然是偶数维和非紧密的。此外,子群 H H 也是非紧凑和非半复性的。此外,我们还确定了 G / H G/H 上唯一的 G G 不变连接是典型连接。另一方面,我们证明了如果 G / H G/H 的维数是奇数,那么它一定是不可还原的,子群 H H 一定是半简单的。最后,我们给出了一个明确的例子,并证明在具有半简单李群 G G 的对称空间 G / H G/H 上不存在其他与典型连接具有相同曲率的无扭 G G -不变连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant connections on non-irreducible symmetric spaces with simple Lie group

Consider a symmetric space G / H G/H with simple Lie group G G . We demonstrate that when G / H G/H is not irreducible, it is necessarily even dimensional and noncompact. Furthermore, the subgroup H H is also both noncompact and non-semisimple. Additionally, we establish that the only G G -invariant connection on G / H G/H is the canonical connection. On the other hand, we show that if G / H G/H has an odd dimension, it must be irreducible, and the subgroup H H must be semisimple. Finally, we present an explicit example, and we show that there exists no other torsion-free G G -invariant connection on a symmetric space G / H G/H with semisimple Lie group G G which has the same curvature as the canonical one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信