{"title":"Detecting nontrivial products in the stable homotopy ring of spheres via the third Morava stabilizer algebra","authors":"Xiangjun Wang, Jianqiu Wu, Yu Zhang, Linan Zhong","doi":"10.1090/proc/16891","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than-or-equal-to 7\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p \\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime number. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S left-parenthesis 3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S(3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the third Morava stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found several families of nontrivial products in the stable homotopy ring of spheres <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> using <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we determine all nontrivial products in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _* (S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the Greek letter family elements <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript s Baseline comma beta Subscript s Baseline comma gamma Subscript s Baseline\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha _s, \\beta _s, \\gamma _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and Cohen’s elements <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"zeta Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\zeta _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are detectable by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript asterisk comma asterisk Baseline left-parenthesis upper S left-parenthesis 3 right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>∗</mml:mo> <mml:mo>,</mml:mo> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{*,*} (S(3))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, we show <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta 1 gamma Subscript s Baseline zeta Subscript n Baseline not-equals 0 element-of pi Subscript asterisk Baseline left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>π</mml:mi> <mml:mo>∗</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta _1 \\gamma _s \\zeta _n \\neq 0 \\in \\pi _*(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n identical-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≡</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n \\equiv 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod 3, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s not-identical-to 0 comma plus-or-minus 1\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s \\not \\equiv 0, \\pm 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mod <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let p≥7p \geq 7 be a prime number. Let S(3)S(3) denote the third Morava stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found several families of nontrivial products in the stable homotopy ring of spheres π∗(S)\pi _* (S) using H∗,∗(S(3))H^{*,*} (S(3)). In this paper, we determine all nontrivial products in π∗(S)\pi _* (S) of the Greek letter family elements αs,βs,γs\alpha _s, \beta _s, \gamma _s and Cohen’s elements ζn\zeta _n which are detectable by H∗,∗(S(3))H^{*,*} (S(3)). In particular, we show β1γsζn≠0∈π∗(S)\beta _1 \gamma _s \zeta _n \neq 0 \in \pi _*(S), if n≡2n \equiv 2 mod 3, s≢0,±1s \not \equiv 0, \pm 1 mod pp.
设 p ≥ 7 p \geq 7 是一个素数。让 S ( 3 ) S(3) 表示第三个莫拉瓦稳定器代数。近年来,Kato-Shimomura 和 Gu-Wang-Wu 利用 H ∗ , ∗ ( S ( 3 ) 发现了球体稳定同调环 π ∗ ( S ) \pi _* (S) 中的几个非小乘积族。) H^{*,*} (S(3)) 。在本文中,我们确定了希腊字母族元素 α s , β s , γ s \alpha _s, \beta _s, \gamma _s和科恩元素 ζ n \zeta _n 在 π ∗ ( S ) \pi _* (S) 中的所有非小乘积,这些乘积都可以用 H ∗ , ∗ ( S ( 3 ) ) 检测到。 H^{*,*} (S(3)) 。特别是,我们证明 β 1 γ s ζ n ≠ 0 ∈ π∗ ( S ) \beta _1 \gamma _s \zeta _n \neq 0 \in \pi _*(S),如果 n ≡ 2 n \equiv 2 mod 3, s ≢ 0 , ± 1 s \not \equiv 0, \pm 1 mod p p 。