Mycorrhiza最新文献

筛选
英文 中文
Biochar is colonized by select arbuscular mycorrhizal fungi in agricultural soils. 在农业土壤中,生物碳由特定的丛枝菌根真菌定殖。
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-05-17 DOI: 10.1007/s00572-024-01149-5
Patrick Neuberger, Carlos Romero, Keunbae Kim, Xiying Hao, Tim A McAllister, Skyler Ngo, Chunli Li, M. Gorzelak
{"title":"Biochar is colonized by select arbuscular mycorrhizal fungi in agricultural soils.","authors":"Patrick Neuberger, Carlos Romero, Keunbae Kim, Xiying Hao, Tim A McAllister, Skyler Ngo, Chunli Li, M. Gorzelak","doi":"10.1007/s00572-024-01149-5","DOIUrl":"https://doi.org/10.1007/s00572-024-01149-5","url":null,"abstract":"","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct orchid mycorrhizal fungal communities among co-occurring Vanilla species in Costa Rica: root substrate and population-based segregation. 哥斯达黎加共生香草物种之间不同的兰花菌根真菌群落:根基质和基于种群的隔离。
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-26 DOI: 10.1007/s00572-024-01147-7
Shan Wong, Jaspreet Kaur, Pankaj Kumar, A. Karremans, Jyotsna Sharma
{"title":"Distinct orchid mycorrhizal fungal communities among co-occurring Vanilla species in Costa Rica: root substrate and population-based segregation.","authors":"Shan Wong, Jaspreet Kaur, Pankaj Kumar, A. Karremans, Jyotsna Sharma","doi":"10.1007/s00572-024-01147-7","DOIUrl":"https://doi.org/10.1007/s00572-024-01147-7","url":null,"abstract":"","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycorrhizal symbiosis in Taxus: a review Taxus 的菌根共生:综述
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-21 DOI: 10.1007/s00572-024-01148-6
Neha Sharma, Ashwani Tapwal
{"title":"Mycorrhizal symbiosis in Taxus: a review","authors":"Neha Sharma, Ashwani Tapwal","doi":"10.1007/s00572-024-01148-6","DOIUrl":"https://doi.org/10.1007/s00572-024-01148-6","url":null,"abstract":"<p><i>Taxus</i>, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in <i>Taxus</i> is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. <i>Taxus</i> predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in <i>Taxus</i> species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in <i>Taxus</i>, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in <i>Taxus</i>, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitous arbuscular mycorrhizal fungi in the roots of herbaceous understory plants with hyphal degeneration in Colchicaceae and Gentianaceae 草本下层植物根部普遍存在的丛枝菌根真菌与秋兰科和龙胆科植物的头状菌退化现象
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-17 DOI: 10.1007/s00572-024-01145-9
Ryota Kusakabe, Moe Sasuga, Masahide Yamato
{"title":"Ubiquitous arbuscular mycorrhizal fungi in the roots of herbaceous understory plants with hyphal degeneration in Colchicaceae and Gentianaceae","authors":"Ryota Kusakabe, Moe Sasuga, Masahide Yamato","doi":"10.1007/s00572-024-01145-9","DOIUrl":"https://doi.org/10.1007/s00572-024-01145-9","url":null,"abstract":"<p>Due to the loss of photosynthetic ability during evolution, some plant species rely on mycorrhizal fungi for their carbon source, and this nutritional strategy is known as mycoheterotrophy. Mycoheterotrophic plants forming <i>Paris</i>-type arbuscular mycorrhizas (AM) exhibit two distinctive mycorrhizal features: degeneration of fungal materials and specialization towards particular fungal lineages. To explore the possibility that some understory AM plants show partial mycoheterotrophy, i.e., both photosynthetic and mycoheterotrophic nutritional strategies, we investigated 13 green herbaceous plant species collected from five Japanese temperate forests. Following microscopic observation, degenerated hyphal coils were observed in four species: two Colchicaceae species, <i>Disporum sessile</i> and <i>Disporum smilacinum</i>, and two Gentianaceae species, <i>Gentiana scabra</i> and <i>Swertia japonica</i>. Through amplicon sequencing, however, we found that all examined plant species exhibited no specificity toward AM fungi. Several AM fungi were consistently found across most sites and all plant species studied. Because previous studies reported the detection of these AM fungi from various tree species in Japanese temperate forests, our findings suggest the presence of ubiquitous AM fungi in forest ecosystems. If the understory plants showing fungal degeneration exhibit partial mycoheterotrophy, they may obtain carbon compounds indirectly from a wide range of surrounding plants utilizing such ubiquitous AM fungi.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprospecting for plant resilience to climate change: mycorrhizal symbionts of European and American beachgrass (Ammophila arenaria and Ammophila breviligulata) from maritime sand dunes 植物抵御气候变化的生物勘探:海洋沙丘中欧洲和美洲沙滩草(Ammophila arenaria 和 Ammophila breviligulata)的菌根共生体
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-16 DOI: 10.1007/s00572-024-01144-w
Arianna Grassi, Irene Pagliarani, Luciano Avio, Caterina Cristani, Federico Rossi, Alessandra Turrini, Manuela Giovannetti, Monica Agnolucci
{"title":"Bioprospecting for plant resilience to climate change: mycorrhizal symbionts of European and American beachgrass (Ammophila arenaria and Ammophila breviligulata) from maritime sand dunes","authors":"Arianna Grassi, Irene Pagliarani, Luciano Avio, Caterina Cristani, Federico Rossi, Alessandra Turrini, Manuela Giovannetti, Monica Agnolucci","doi":"10.1007/s00572-024-01144-w","DOIUrl":"https://doi.org/10.1007/s00572-024-01144-w","url":null,"abstract":"<p>Climate change and global warming have contributed to increase terrestrial drought, causing negative impacts on agricultural production. Drought stress may be addressed using novel agronomic practices and beneficial soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), able to enhance plant use efficiency of soil resources and water and increase plant antioxidant defence systems. Specific traits functional to plant resilience improvement in dry conditions could have developed in AMF growing in association with xerophytic plants in maritime sand dunes, a drought-stressed and low-fertility environment. The most studied of such plants are European beachgrass (<i>Ammophila arenaria</i> Link), native to Europe and the Mediterranean basin, and American beachgrass (<i>Ammophila breviligulata</i> Fern.), found in North America. Given the critical role of AMF for the survival of these beachgrasses, knowledge of the composition of AMF communities colonizing their roots and rhizospheres and their distribution worldwide is fundamental for the location and isolation of native AMF as potential candidates to be tested for promoting crop growth and resilience under climate change. This review provides quantitative and qualitative data on the occurrence of AMF communities of <i>A. arenaria</i> and <i>A. breviligulata</i> growing in European, Mediterranean basin and North American maritime sand dunes, as detected by morphological studies, trap culture isolation and molecular methods, and reports on their symbiotic performance. Moreover, the review indicates the dominant AMF species associated with the two <i>Ammophila</i> species and the common species to be further studied to assess possible specific traits increasing their host plants resilience toward drought stress under climate change.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycobiont identity and light conditions affect belowground morphology and physiology of a mixotrophic orchid Cremastra variabilis (Orchidaceae). 霉菌身份和光照条件影响混养兰科植物 Cremastra variabilis(兰科)的地下形态和生理。
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-01 Epub Date: 2024-02-21 DOI: 10.1007/s00572-024-01138-8
Takahiro Yagame, Tomáš Figura, Eiji Tanaka, Marc-André Selosse, Tomohisa Yukawa
{"title":"Mycobiont identity and light conditions affect belowground morphology and physiology of a mixotrophic orchid Cremastra variabilis (Orchidaceae).","authors":"Takahiro Yagame, Tomáš Figura, Eiji Tanaka, Marc-André Selosse, Tomohisa Yukawa","doi":"10.1007/s00572-024-01138-8","DOIUrl":"10.1007/s00572-024-01138-8","url":null,"abstract":"<p><p>We have investigated whether mycobiont identity and environmental conditions affect morphology and physiology of the chlorophyllous orchid: Cremastra variabilis. This species grows in a broad range of environmental conditions and associates with saprotrophic rhizoctonias including Tulasnellaceae and saprotrophic non-rhizoctonian fungi from the family Psathyrellaceae. We cultured the orchid from seeds under aseptic culture conditions and subsequently inoculated the individuals with either a Tulasnellaceae or a Psathyrellaceae isolate. We observed underground organ development of the inoculated C. variabilis plants and estimated their nutritional dependency on fungi using stable isotope abundance. Coralloid rhizome development was observed in all individuals inoculated with the Psathyrellaceae isolate, and 1-5 shoots per seedling grew from the tip of the coralloid rhizome. In contrast, individuals associated with the Tulasnellaceae isolate did not develop coralloid rhizomes, and only one shoot emerged per plantlet. In darkness, δ<sup>13</sup>C enrichment was significantly higher with both fungal isolates, whereas δ<sup>15</sup>N values were only significantly higher in plants associated with the Psathyrellaceae isolate. We conclude that C. variabilis changes its nutritional dependency on fungal symbionts depending on light availability and secondly that the identity of fungal symbiont influences the morphology of underground organs.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycorrhizal symbioses in the Andean paramo. 安第斯巴拉莫地区的菌根共生。
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-01 Epub Date: 2023-12-27 DOI: 10.1007/s00572-023-01133-5
Daniela Leon, Gwendolyn Peyre, Martin Zobel, Mari Moora, Yiming Meng, Maria Diaz, C Guillermo Bueno
{"title":"Mycorrhizal symbioses in the Andean paramo.","authors":"Daniela Leon, Gwendolyn Peyre, Martin Zobel, Mari Moora, Yiming Meng, Maria Diaz, C Guillermo Bueno","doi":"10.1007/s00572-023-01133-5","DOIUrl":"10.1007/s00572-023-01133-5","url":null,"abstract":"<p><p>The Andean paramo, hereafter \"paramo\", is a Neotropical high-mountain region between the treeline and permanent snowline (3500-4800 m) and is considered the world's coolest biodiversity hotspot. Because of paramo's high humidity, solar radiation and temperature variation, mycorrhizal symbiosis is expected to be essential for plants. Existing theory suggests that replacement of arbuscular mycorrhizal (AM) by ectomycorrhizal (ECM) and then ericoid mycorrhizal plants (ERM) can be expected with increasing elevation. Previous findings also suggest that non-(NM) and facultatively mycorrhizal (FM) species predominate over obligatory mycorrhizal (OM) species at high elevations. However, these expectations have never been tested outside of the northern temperate zone. We addressed the distribution and environmental drivers of plant mycorrhizal types (AM, ECM and ERM) and statuses (NM, FM and OM) along the paramo's elevational gradient. We used vegetation plots from the VegParamo database, climatic and edaphic data from online repositories, and up-to-date observation information about plant mycorrhizal traits at species and genus level, the latter being proposed as hypotheses. AM plants were dominant along the entire gradient, and ERM plants were most abundant at the lowest elevations (2500-3000 m). The share of FM plants increased and that of OM plants decreased with elevation, while NM plants increased above 4000 m. Temperature and soil pH were positively related to the abundance of AM plants and negatively to ERM plants. Our results reveal patterns that contrast with those observed in temperate northern-hemisphere ecosystems.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectomycorrhizal fungal communities in natural and urban ecosystems: Quercus humboldtii as a study case in the tropical Andes. 自然和城市生态系统中的外生菌根真菌群落:以热带安第斯山脉的柞树(Quercus humboldtii)为研究案例。
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-01 Epub Date: 2024-03-14 DOI: 10.1007/s00572-024-01140-0
Juan David Sanchez-Tello, Adriana Corrales
{"title":"Ectomycorrhizal fungal communities in natural and urban ecosystems: Quercus humboldtii as a study case in the tropical Andes.","authors":"Juan David Sanchez-Tello, Adriana Corrales","doi":"10.1007/s00572-024-01140-0","DOIUrl":"10.1007/s00572-024-01140-0","url":null,"abstract":"<p><p>Worldwide urban landscapes are expanding because of the growing human population. Urban ecosystems serve as habitats to highly diverse communities. However, studies focusing on the diversity and structure of ectomycorrhizal communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is an ectomycorrhizal tree thriving in tropical montane forests hosting a high diversity of ectomycorrhizal fungi. Q. humboldtii is planted as an urban tree in Bogotá (Colombia). We studied how root-associated fungal communities of this tree change between natural and urban areas. Using Illumina sequencing, we amplified the ITS1 region and analyzed the resulting data using both OTUs and Amplicon Sequence Variants (ASVs) bioinformatics pipelines. The results obtained using both pipelines showed no substantial differences between OTUs and ASVs for the community patterns of root-associated fungi, and only differences in species richness were observed. We found no significant differences in the species richness between urban and rural sites based on Fisher's alpha or species-accumulation curves. However, we found significant differences in the community composition of fungi present in the roots of rural and urban trees with rural communities being dominated by Russula and Lactarius and urban communities by Scleroderma, Hydnangium, and Trechispora, suggesting a high impact of urban disturbances on ectomycorrhizal fungal communities. Our results highlight the importance of urban trees as reservoirs of fungal diversity and the potential impact of urban conditions on favoring fungal species adapted to more disturbed ecosystems.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic phosphorus levels change the hyphosphere phoD-harboring bacterial community of Funneliformis mosseae. 有机磷水平改变了 Funneliformis mosseae 的下层 phoD-harboring 细菌群落。
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-01 Epub Date: 2023-12-22 DOI: 10.1007/s00572-023-01132-6
Yaqin Sun, Yanan Cheng, Hang Li, Xing Liu, Ying Zhang, Xiujuan Ren, Dafu Wu, Fei Wang
{"title":"Organic phosphorus levels change the hyphosphere phoD-harboring bacterial community of Funneliformis mosseae.","authors":"Yaqin Sun, Yanan Cheng, Hang Li, Xing Liu, Ying Zhang, Xiujuan Ren, Dafu Wu, Fei Wang","doi":"10.1007/s00572-023-01132-6","DOIUrl":"10.1007/s00572-023-01132-6","url":null,"abstract":"<p><p>The phoD-harboring bacterial community is responsible for organic phosphorus (P) mineralization in soil and is important for understanding the interactions between arbuscular mycorrhizal (AM) fungi and phosphate-solubilizing bacteria (PSB) at the community level for organic P turnover. However, current understanding of the phoD-harboring bacterial community associated with AM fungal hyphae responses to organic P levels remains incomplete. Here, two-compartment microcosms were used to explore the response of the phoD-harboring bacterial community in the hyphosphere to organic P levels by high-throughput sequencing. Extraradical hyphae of Funneliformis mosseae enriched the phoD-harboring bacterial community and organic P levels significantly altered the composition of the phoD-harboring bacterial community in the Funneliformis mosseae hyphosphere. The relative abundance of dominant families Pseudomonadaceae and Burkholderiaceae was significantly different among organic P treatments and were positively correlated with alkaline phosphatase activity and available P concentration in the hyphosphere. Furthermore, phytin addition significantly decreased the abundance of the phoD gene, and the latter was significantly and negatively correlated with available P concentration. These findings not only improve the understanding of how organic P influences the phoD-harboring bacterial community but also provide a new insight into AM fungus-PSB interactions at the community level to drive organic P turnover in soil.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycorrhizas in South American Ericaceae. 南美洲 Ericaceae 的菌根。
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-04-01 Epub Date: 2024-03-21 DOI: 10.1007/s00572-024-01141-z
María Isabel Mujica, Héctor Herrera, Mauricio Cisternas, Alejandra Zuniga-Feest, Cristiane Sagredo-Saez, Marc-André Selosse
{"title":"Mycorrhizas in South American Ericaceae.","authors":"María Isabel Mujica, Héctor Herrera, Mauricio Cisternas, Alejandra Zuniga-Feest, Cristiane Sagredo-Saez, Marc-André Selosse","doi":"10.1007/s00572-024-01141-z","DOIUrl":"10.1007/s00572-024-01141-z","url":null,"abstract":"<p><p>Mycorrhizal symbioses (mycorrhizas) of Ericaceae, including ericoid mycorrhiza (ErM), have been mainly studied in the Northern Hemisphere, although the highest diversity of ericaceous plants is located in the Southern Hemisphere, where several regions remain largely unexplored. One of them is South America, which harbors a remarkably high diversity of Ericaceae (691 species and 33 genera) in a wide range of environmental conditions, and a specific mycorrhizal type called cavendishioid. In this review, we compile all available information on mycorrhizas of Ericaceae in South America. We report data on the mycorrhizal type and fungal diversity in 17 and 11 ericaceous genera, respectively. We show that South American Ericaceae exhibit a high diversity of habitats and life forms and that some species from typical ErM subfamilies may also host arbuscular mycorrhiza. Also, a possible geographical pattern in South American ErM fungal communities is suggested, with Sebacinales being the dominant mycorrhizal partners of the Andean clade species from tropical mountains, while archetypal ErM fungi are common partners in southern South America species. The gathered information challenges some common assumptions about ErM and suggests that focusing on understudied regions would improve our understanding of the evolution of mycorrhizal associations in this intriguing family.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信