Mycorrhiza最新文献

筛选
英文 中文
Ectomycorrhizal fungal communities of Shorea robusta along an elevation gradient. 沿海拔梯度分布的赤杨外生菌根真菌群落。
IF 3.8 2区 生物学
Mycorrhiza Pub Date : 2025-08-12 DOI: 10.1007/s00572-025-01224-5
Sabitri Shrestha, Sujan Balami, Martina Vašutová, Magda Edwards, Tej Narayan Mandal, Jay Kant Raut, Tilak Prasad Gautam
{"title":"Ectomycorrhizal fungal communities of Shorea robusta along an elevation gradient.","authors":"Sabitri Shrestha, Sujan Balami, Martina Vašutová, Magda Edwards, Tej Narayan Mandal, Jay Kant Raut, Tilak Prasad Gautam","doi":"10.1007/s00572-025-01224-5","DOIUrl":"10.1007/s00572-025-01224-5","url":null,"abstract":"<p><p>Shorea robusta (Sal) is an ecologically and economically important hardwood tree species growing in the plains and lower foothills of the Himalayan region. It is a dual-mycorrhizal tree associated with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. To understand how ECM communities associated with Sal roots are structured, we studied their diversity, composition, and root colonisation in four tropical forests along an elevation gradient (82 to 950 m a.s.l.). The ECM community was not found to be very diverse: we obtained 155 ECM operational taxonomic units (OTUs) belonging to 13 ECM genera in 8 families of Basidiomycota. The genus Tomentella was the most dominant, followed by Russula and Inocybe. Elevation explained 10.2% of variability in ECM composition, and significant effects of forest type, geographic position, soil temperature and moisture were confirmed. The forest at the highest elevation had ECM communities whose community structure was divergent from those at lower elevation. ECM root colonisation significantly decreased with increasing elevation and decreasing available P content. Whereas a low number of ECM species produced a high ECM colonisation of Shorea roots in low-elevation forests, a more diverse ECM community formed a low ECM colonization in high-elevation forests. The identified dominant species may be potentially used as inoculum for Sal forest restoration.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 4","pages":"50"},"PeriodicalIF":3.8,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144822089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction between arbuscular mycorrhizal fungi and native soil microbiome on early stage restoration of a coal-mine soil. 丛枝菌根真菌与原生土壤微生物群在煤矿土壤早期修复中的相互作用
IF 3.8 2区 生物学
Mycorrhiza Pub Date : 2025-08-08 DOI: 10.1007/s00572-025-01218-3
Caroline Krug Vieira, Luiz Gustavo Dos Anjos Borges, Matheus Nicoletti Marascalchi, Carlos Henrique Russi, Tamiris Marandola, Karl Kemmelmeier, Cláudio Roberto Fonsêca Sousa Soares, Sidney Luiz Stürmer, Adriana Giongo
{"title":"Interaction between arbuscular mycorrhizal fungi and native soil microbiome on early stage restoration of a coal-mine soil.","authors":"Caroline Krug Vieira, Luiz Gustavo Dos Anjos Borges, Matheus Nicoletti Marascalchi, Carlos Henrique Russi, Tamiris Marandola, Karl Kemmelmeier, Cláudio Roberto Fonsêca Sousa Soares, Sidney Luiz Stürmer, Adriana Giongo","doi":"10.1007/s00572-025-01218-3","DOIUrl":"10.1007/s00572-025-01218-3","url":null,"abstract":"<p><p>The recovery of the soil ecosystem after severe disturbances, such as coal-mining activities, depends on both abiotic and biotic improvements. This study assessed the influence of arbuscular mycorrhizal (AM) fungal consortia on microbial community dynamics across two stages of soil recovery - 2 years (2Y) and 15 years (15Y) post-disturbance - using a secondary succession forest (SSR) as a reference. We analyzed bacterial community composition via 16 S rRNA gene amplicon sequencing and evaluated key soil quality indicators. While inoculation with AM fungal consortia had minimal effects on most soil parameters, significant differences were observed between recovery stages. The 15Y recovery site exhibited improved soil structure, microbial activity, and aggregate stability compared to the 2Y site, highlighting the importance of long-term restoration. However, potential overlap in ecological roles among native microorganisms likely mitigates the impact of AMF inoculation. These findings suggest that AM fungal consortia alone may not drive immediate improvements in soil quality but can contribute to microbial interactions and recovery processes over time. This study highlights the complexity of soil restoration and emphasizes the need for strategies that integrate plant cover with microbial community development to enhance long-term ecosystem stability. Further research should explore the specific roles of AM fungi and native soil microbes in promoting soil structure and accelerating recovery.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 4","pages":"49"},"PeriodicalIF":3.8,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144799711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of mycorrhizal hyphal connections and neighbouring plants on Plantago lanceolata physiology and nutrient uptake. 菌根菌丝连接及邻近植物对车前草生理和养分吸收的影响。
IF 3.8 2区 生物学
Mycorrhiza Pub Date : 2025-08-02 DOI: 10.1007/s00572-025-01221-8
Henry W G Birt, Lewis P Allen, Sam Madge, Clare H Robinson, Richard D Bardgett, David Johnson
{"title":"The influence of mycorrhizal hyphal connections and neighbouring plants on Plantago lanceolata physiology and nutrient uptake.","authors":"Henry W G Birt, Lewis P Allen, Sam Madge, Clare H Robinson, Richard D Bardgett, David Johnson","doi":"10.1007/s00572-025-01221-8","DOIUrl":"10.1007/s00572-025-01221-8","url":null,"abstract":"<p><p>Most plants extend their zone of interaction with surrounding soils and plants via mycorrhizal hyphae, which in some cases can form common mycorrhizal networks with hyphal continuity to other neighbouring plants. These interactions can impact plant health and ecosystem function, yet the role of these radial plants in mycorrhizal interactions and subsequent plant performance remains underexplored. Here we investigated the influence of hyphal exploration and interaction with neighbouring mycorrhizal plants, plants that are weakly mycorrhizal, and a lack of neighbouring plants on the performance of Plantago lanceolata, a mycotrophic perennial herb common to many European grasslands, using mesh cores and the manipulation of neighbouring plant communities. Allowing growth of hyphae beyond the mesh core increased carbon capture above-ground and release below-ground as root exudates and resulted in the greater accumulation of elements relevant to plant health in P. lanceolata. However, contrary to expectations, the presence of mycorrhizal, or weakly mycorrhizal neighbours as well as an absence of neighbours did not significantly alter the benefits of hyphal networks to P. lanceolata. Our findings demonstrate that enabling the development of a fungal network beyond the immediate host rhizosphere significantly influences plant leaf elemental stoichiometry, enhances plant carbon capture, and increases the amount of carbon they release via their roots as exudates. Our experimental design also provides a simple set of controls to prevent attributing positive mycorrhizal effects to neighbouring plant connections.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 4","pages":"48"},"PeriodicalIF":3.8,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12317909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144768798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity of ectomycorrhizal fungal communities across six Picea species grown in common gardens. 常见园林中6种云杉种外生菌根真菌群落的多样性
IF 3.8 2区 生物学
Mycorrhiza Pub Date : 2025-07-29 DOI: 10.1007/s00572-025-01222-7
Tan Gao, Xuan Zhou, Mingxin Liu, Yumeng Xiao, Baiyu An, Wenjiao Wei, Zhiguang Zhao, Changming Zhao
{"title":"Diversity of ectomycorrhizal fungal communities across six Picea species grown in common gardens.","authors":"Tan Gao, Xuan Zhou, Mingxin Liu, Yumeng Xiao, Baiyu An, Wenjiao Wei, Zhiguang Zhao, Changming Zhao","doi":"10.1007/s00572-025-01222-7","DOIUrl":"10.1007/s00572-025-01222-7","url":null,"abstract":"<p><p>Host plant identity is a primary determinant of ectomycorrhizal (ECM) fungal diversity and community composition, but the effect of host identity within congeneric species and whether this effect varies with environmental changes remain unclear. In this study, we used ITS rRNA amplicon sequencing to assess the diversity and community composition of ECM fungi in the roots of six phylogenetically distinct spruce (Picea) species grown in three common gardens with varying environmental conditions. Our results showed that, although ECM fungal richness and Shannon diversity were similar among spruce species at each site, their ECM fungal community composition differed. The differences in ECM fungal community composition between paired spruce species were not significant at the wettest site, but were significant at two dry sites, with the main difference observed between P. asperata and other spruce species (p < 0.05). The Mantel test indicated a weak positive correlation between ECM fungal community composition differences and the phylogenetic distance among host species. Preferred spruce/ECM fungal species varied across the three sites, with the lowest preference ratio observed at the wettest site. Additionally, Sebacina, Trichophaea, and Wilcoxina were the dominant genera in spruce roots. These results highlight the significant role of host identity within congeneric species in ECM fungal community assembly in relatively dry environment, enhancing our understanding of how congeneric plants influence ECM fungal diversity and community composition.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 4","pages":"47"},"PeriodicalIF":3.8,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144732368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycelial communities associated with Ostrya carpinifolia, Quercus pubescens and Pinus nigra in a patchy Sub-Mediterranean Karst woodland. 亚地中海斑驳喀斯特林地中栎、短毛栎和黑松菌丝群落。
IF 3.8 2区 生物学
Mycorrhiza Pub Date : 2025-07-25 DOI: 10.1007/s00572-025-01220-9
Tanja Mrak, Philip Alan Brailey-Crane, Nataša Šibanc, Tijana Martinović, Jožica Gričar, Hojka Kraigher
{"title":"Mycelial communities associated with Ostrya carpinifolia, Quercus pubescens and Pinus nigra in a patchy Sub-Mediterranean Karst woodland.","authors":"Tanja Mrak, Philip Alan Brailey-Crane, Nataša Šibanc, Tijana Martinović, Jožica Gričar, Hojka Kraigher","doi":"10.1007/s00572-025-01220-9","DOIUrl":"10.1007/s00572-025-01220-9","url":null,"abstract":"<p><p>Common mycorrhizal networks of ectomycorrhizal (EcM) fungi could be of great benefit to trees growing in the shallow soils of Sub-Mediterranean Karst ecosystems, potentially playing a crucial role in the survival of trees in this harsh environment. The first step to confirm the existence of such networks is to assess the extent and nature of symbiont sharing in the mycelial community. To address this question, we incubated in-growth mesh bags under the native Ostrya carpinifolia and Quercus pubescens, and the non-native Pinus nigra, over two consecutive years. In Q. pubescens and P. nigra, but not in O. carpinifolia, mycelium production was significantly higher in the year with higher spring precipitation, indicating the influence of climatic conditions, but also the identity of the host tree. We observed a complex interaction between tree species and sampling year in structuring the composition and diversity of mycelial communities. Local environmental conditions contributed additionally and were responsible for 21.46% of the community variation between samples. Although ~ 70% of fungal operational taxonomic units were shared across the studied tree species, distinct community compositions emerged, emphasizing the role of host tree specificity. Q. pubescens exhibited greater stability in EcM richness between sampling years, whereas P. nigra showed lower EcM richness, likely due to limited availability of compatible fungi and reliance on introduced fungal partners. Additionally, differences in EcM fungal exploration strategies were observed. O. carpinifolia and Q. pubescens mainly hosted non-specific EcM fungi with short distance exploration types. In contrast, EcM fungi of P. nigra had higher spatial spread, and were predominantly conifer specific. Overall, our results emphasize the importance of host specificity, soil parameters, spatial proximity, and climatic variability for the structuring of mycelial communities in fragmented forests.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 4","pages":"46"},"PeriodicalIF":3.8,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144708221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accumulation of glomalin-related soil protein to soil carbon storage in forest ecosystems along an elevation gradient. 高程梯度下森林生态系统球囊素相关土壤蛋白质积累对土壤碳储量的影响
IF 3.8 2区 生物学
Mycorrhiza Pub Date : 2025-07-17 DOI: 10.1007/s00572-025-01219-2
Nuttaporn Luyprasert, Palingamoorthy Gnanamoorthy, Shangwen Xia, Ashutosh Kumar Singh, Xiaodong Yang
{"title":"Accumulation of glomalin-related soil protein to soil carbon storage in forest ecosystems along an elevation gradient.","authors":"Nuttaporn Luyprasert, Palingamoorthy Gnanamoorthy, Shangwen Xia, Ashutosh Kumar Singh, Xiaodong Yang","doi":"10.1007/s00572-025-01219-2","DOIUrl":"10.1007/s00572-025-01219-2","url":null,"abstract":"<p><p>Glomalin-related soil protein (GRSP), a glycoprotein produced by arbuscular mycorrhizal fungi (AMF), plays a critical role in soil organic carbon (SOC) storage in forest ecosystems. However, the factors influencing its variability and contribution to SOC along forest elevation gradients remain poorly understood, limiting our ability to predict how soil carbon sequestration through GRSP will respond to future global warming. Therefore, this study explored the relationships among GRSP and SOC with climatic and edaphic factors along elevation gradients (666-3892 m) spanning diverse forest types in tropical rainforest, subtropical forest, and subalpine forest in Yunnan, Southwest China. Our findings revealed that AMF spore abundance declined, whereas AMF root colonization and GRSP concentrations increased with increasing elevation. GRSP showed a stronger positive correlation with AMF root colonization than with spore abundance, particularly in subtropical and subalpine forests where nutrient availability was higher. A significant positive relationship was observed between GRSP and SOC across all three forest sites, with the strongest association in subtropical forests. These results suggest that GRSP accumulation is sensitive to climate and nutrient cycling, emphasizing the role of AMF activity and GRSP as an AMF-derived compound in mediating SOC storage across elevation gradients, consequently contributing to climate change mitigation.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 4","pages":"45"},"PeriodicalIF":3.8,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144659658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between a liverwort and arbuscular mycorrhizal fungi: a promising strategy for the phytoremediation of polycyclic aromatic hydrocarbons. 一种苔类植物与丛枝菌根真菌之间的联系:多环芳烃植物修复的一种有前途的策略。
IF 3.8 2区 生物学
Mycorrhiza Pub Date : 2025-06-19 DOI: 10.1007/s00572-025-01217-4
Romina Storb, Maya Svriz, Elisabet Aranda, Sebastián Fracchia, Nahuel Spinedi, José Martin Scervino
{"title":"Association between a liverwort and arbuscular mycorrhizal fungi: a promising strategy for the phytoremediation of polycyclic aromatic hydrocarbons.","authors":"Romina Storb, Maya Svriz, Elisabet Aranda, Sebastián Fracchia, Nahuel Spinedi, José Martin Scervino","doi":"10.1007/s00572-025-01217-4","DOIUrl":"10.1007/s00572-025-01217-4","url":null,"abstract":"<p><p>Soil contamination with polycyclic aromatic hydrocarbons (PAHs) represents a major environmental challenge and requires cost-effective and environmentally friendly remediation technologies. Phytoremediation, enhanced by arbuscular mycorrhizal fungi (AMF), is an effective and extensive technique for PAHs remediation, although, its application with non-vascular plants, is largely unexplored. This study investigates the role of the AMF Rhizophagus irregularis in the uptake and bioaccumulation of anthracene in the liverwort Lunularia cruciata under in vitro conditions. The thallus and the AMF were able to absorb and bioaccumulate anthracene in the cell wall and spores, hyphae and arbuscules respectively. Our results indicate that the liverwort-fungus system employs multiple phytoremediation mechanisms, including phytoaccumulation and phytostabilization. At intermediate contamination levels, the fungal symbiont enhanced contaminant accumulation in the plant, whereas at higher contamination levels, this effect diminished, suggesting a potential limitation in fungal-mediated uptake under extreme conditions. These findings highlight the potential of AMF symbiosis in liverworts for developing biological tools for PAHs remediation, emphasizing the dependence on pollutant concentration for the effectiveness of phytoremediation.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 4","pages":"44"},"PeriodicalIF":3.8,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144326293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated peloton and fruiting body isotope data shed light on mycoheterotrophic interactions in Gastrodia pubilabiata (Orchidaceae). 综合核素和子实体同位素数据揭示了天麻(兰科)真菌异养相互作用。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-06-11 DOI: 10.1007/s00572-025-01213-8
Kenji Suetsugu, Hidehito Okada
{"title":"Integrated peloton and fruiting body isotope data shed light on mycoheterotrophic interactions in Gastrodia pubilabiata (Orchidaceae).","authors":"Kenji Suetsugu, Hidehito Okada","doi":"10.1007/s00572-025-01213-8","DOIUrl":"10.1007/s00572-025-01213-8","url":null,"abstract":"<p><p>The mycoheterotrophic nutritional mode, characterized by the acquisition of fungal-derived carbon by plants, has long captivated botanists and mycologists. Recent stable isotope analyses of fungal pelotons isolated from roots have advanced our understanding of this nutritional strategy; however, concerns remain regarding potential isotopic biases, particularly <sup>15</sup>N depletion during lysis or extraction. To address these concerns, we focused on Gastrodia pubilabiata, a fully mycoheterotrophic orchid that associates with saprotrophic fungi. This species offers an ideal system to test whether peloton tissues reliably reflect fungal isotope signatures, as its mycorrhizal roots occasionally occur in direct contact with the fruiting bodies of its fungal partner. We measured δ<sup>13</sup>C and δ<sup>15</sup>N values in the aboveground tissues of G. pubilabiata, pelotons extracted from its roots, and fruiting bodies of the associated wood-decaying fungus Cyanotrama gypsea, along with neighboring autotrophic reference plants. The stable isotope analysis revealed that δ<sup>13</sup>C values were nearly identical between pelotons and fruiting bodies, while δ<sup>15</sup>N values were slightly higher in pelotons, indicating that peloton-derived isotopic data reliably reflect the fungal source. Moreover, the <sup>13</sup>C and <sup>15</sup>N enrichment observed in the orchid relative to the fungal fractions was broadly consistent with expected trophic-level fractionation, suggesting a predator-prey-like mode of nutrient transfer. Taken together, these findings support the validity of recently developed isotope-based approaches using extracted pelotons to represent fungal isotopic signatures, at least within this system.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 3","pages":"43"},"PeriodicalIF":3.3,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144266664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological specificity of fungi on seedling establishment in Dendrobium huoshanense: a narrow distributed medicinal orchid. 真菌对狭窄分布的药用兰花霍山石斛成苗的生态特异性。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-06-09 DOI: 10.1007/s00572-025-01216-5
Yu Zhang, Shi-Wen Wang, Neng-Qi Li, Qian Jin, Rengasamy Anbazhakan, Ya-Feng Dai, Zeng-Xu Xiang, Jiang-Yun Gao
{"title":"Ecological specificity of fungi on seedling establishment in Dendrobium huoshanense: a narrow distributed medicinal orchid.","authors":"Yu Zhang, Shi-Wen Wang, Neng-Qi Li, Qian Jin, Rengasamy Anbazhakan, Ya-Feng Dai, Zeng-Xu Xiang, Jiang-Yun Gao","doi":"10.1007/s00572-025-01216-5","DOIUrl":"10.1007/s00572-025-01216-5","url":null,"abstract":"","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 3","pages":"41"},"PeriodicalIF":3.3,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144248863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-mycorrhizal colonization is determined by plant age and host identity in two species of Populus. 两种杨树的双菌根定植受树龄和寄主身份的影响。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-06-09 DOI: 10.1007/s00572-025-01215-6
Jake Nash, Brian Looney, Melissa A Cregger, Christopher Schadt, Rytas Vilgalys
{"title":"Dual-mycorrhizal colonization is determined by plant age and host identity in two species of Populus.","authors":"Jake Nash, Brian Looney, Melissa A Cregger, Christopher Schadt, Rytas Vilgalys","doi":"10.1007/s00572-025-01215-6","DOIUrl":"10.1007/s00572-025-01215-6","url":null,"abstract":"<p><p>Plants have evolved symbioses with mycorrhizal and endophytic fungi that are essential for their growth and survival. While most plants associate with a single guild of mycorrhizal fungi, a select group termed \"dual-mycorrhizal plants\" associate with both arbuscular mycorrhizal and ectomycorrhizal fungi. Although a shift from predominance of arbuscular mycorrhizal to ectomycorrhizal colonization with plant development has been demonstrated on other dual-mycorrhizal hosts, it is not known how mycorrhizal colonization shifts with plant age in Populus species. We performed a controlled growth experiment with natural field-sourced inocula to test for age-dependent shifts in fungal colonization rates and for host-specific patterns of colonization in two species of Populus (P. tremuloides and P. trichocarpa). We found that only P. trichocarpa displayed dual-mycorrhizal colonization, while P. tremuloides associated with ectomycorrhizal fungi, but not arbuscular mycorrhizal fungi. Both guilds of mycorrhizal fungi increased in abundance with plant age, while root endophytic fungal colonization decreased. Many of the early-colonizing endophytic fungi that we documented have strong saprotrophic capabilities, which may be an important trait for fast colonization. Dark septate endophytes were more abundant than either guild of mycorrhizal fungi, and are likely to be functionally important members of the Populus root fungal community. Our findings represent a novel pattern in the development of dual-mycorrhizal colonization and illustrate that Populus species vary in their association with arbuscular mycorrhizal fungi. Our results also highlight the importance of dark septate endophyte colonization dynamics on dual-mycorrhizal plants.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 3","pages":"42"},"PeriodicalIF":3.3,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144258612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信