Mycorrhiza最新文献

筛选
英文 中文
Morphological spore-based characterisation and molecular approaches reveal comparable patterns in glomeromycotan communities.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-03-10 DOI: 10.1007/s00572-025-01198-4
Noelia Cofré, Gabriel Grilli, Nicolás Marro, Martín Videla, Carlos Urcelay
{"title":"Morphological spore-based characterisation and molecular approaches reveal comparable patterns in glomeromycotan communities.","authors":"Noelia Cofré, Gabriel Grilli, Nicolás Marro, Martín Videla, Carlos Urcelay","doi":"10.1007/s00572-025-01198-4","DOIUrl":"https://doi.org/10.1007/s00572-025-01198-4","url":null,"abstract":"<p><p>Traditionally, characterisation and comparison of AMF communities has been carried out by morphological identification of asexual spores in soil. In recent decades, molecular methods such as soil metabarcoding have become more popular than morphological identification of spores, but direct comparisons of the efficiency of both approaches have been rare. In this study, we compared AMF communities in soil samples from vegetable farms using both morphological and molecular methods (internal transcribed spacer, ITS, markers). In addition, we performed a systematic literature search and retrieved nine studies that analysed AMF communities using both approaches in the same soil samples, mostly in agroecosystems. Our results show that AMF communities determined by morphological spore-based identification are different than those determined by molecular genetic markers, but not as often claimed. In some cases, the morphological spore-based characterisation of spores revealed more diverse glomeromycotan communities. Moreover, in several cases the spore-based methods recovered taxa that the molecular methods did not, while in other cases the opposite was observed. The field and literature-based results of this study indicate that for a comprehensive and exhaustive characterisation of AMF communities it is necessary to combine both approaches. However, if the aim is to compare communities under different environmental conditions, both approaches provide comparable patterns.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"19"},"PeriodicalIF":3.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking germination: the role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-03-10 DOI: 10.1007/s00572-025-01184-w
Zeyu Zhao, Luna Yang, Yaoyao Wang, Xin Qian, Gang Ding, Hans Jacquemyn, Xiaoke Xing
{"title":"Unlocking germination: the role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid.","authors":"Zeyu Zhao, Luna Yang, Yaoyao Wang, Xin Qian, Gang Ding, Hans Jacquemyn, Xiaoke Xing","doi":"10.1007/s00572-025-01184-w","DOIUrl":"https://doi.org/10.1007/s00572-025-01184-w","url":null,"abstract":"<p><p>Orchids represent an important component of biodiversity in many ecosystems worldwide, notwithstanding their seed germination and distribution may to a large extent be determined and influenced by mycorrhizal fungi. While it is commonly assumed that widespread orchids are mycorrhizal generalists, the degree to which mycorrhizal diversity supports seed germination remains relatively underexplored. In this study, we investigated the role of a variety of Ceratobasidium fungi in supporting seed germination of the widespread terrestrial orchid Gymnadenia conopsea across China. Twelve Ceratobasidium strains isolated from G. conopsea and other orchids were examined for their ability to support germination of G. conopsea seeds collected from twelve sites across China. Of the twelve tested strains, six were able to support seed germination, while the remaining six strains showed no activity. Compatible strains showed a broad phylogenetic breadth, indicating the G. conopsea is capable of initiating associations with a diverse array of Ceratobasidium fungi. However, the six compatible strains differed in their ability to support protocorm formation. Moreover, germination success of seeds collected from different sites differed among Ceratobasidium strains. Seeds from northern China had a significantly higher number of compatible strains (average 5.6) than seeds from southwestern China (average 3.5). Our results suggest that G. conopsea is not only a mycorrhizal generalist in the adult stage but also in the seed germination stage, at least towards Ceratobasidium fungi. However, the significant strain-provenance interactions indicate regional differences in orchid-fungus interactions. These findings are important for improving local population restoration programs and germplasm conservation of this widespread and endangered orchid species.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"18"},"PeriodicalIF":3.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arbuscular mycorrhizal fungi strongly influence the endorhizosphere of grapevine rootstock with soil type as a key factor. 丛枝菌根真菌对葡萄根茎的内生层影响很大,而土壤类型是一个关键因素。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-03-05 DOI: 10.1007/s00572-025-01194-8
K Štůsková, A Vavřiník, E Hakalová, J Čechová, D Gramaje, A Eichmeier
{"title":"Arbuscular mycorrhizal fungi strongly influence the endorhizosphere of grapevine rootstock with soil type as a key factor.","authors":"K Štůsková, A Vavřiník, E Hakalová, J Čechová, D Gramaje, A Eichmeier","doi":"10.1007/s00572-025-01194-8","DOIUrl":"10.1007/s00572-025-01194-8","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the health and productivity of host plants, including grapevine. By forming symbiotic relationships with plant roots, AMF significantly improve water uptake and nutrient absorption, particularly phosphorus (P) and nitrogen (N). This study evaluated the microbiome composition and AMF colonization in the grapevine endorhizosphere across five wine-growing sub-regions in the Czech Republic. In all five sub-regions, in terms of composition of the fungal microbiome, the phyla Ascomycetes and Basidiomycetes were most numerous. Additionally, the study confirmed that LSU primers are more sensitive than ITS primers for AMF sequencing. While the representation of the phylum Glomeromycetes ranged from 0.07% to 5.65% in the ITS library, it was significantly higher, ranging from 83.74% to 98.71%, in the LSU library. The most significant difference compared to other sub-regions was observed in the Slovácko sub-region, where the soil had a low pH, a different texture (sandy loam), reduced micronutrient concentration, and low organic matter. The application of chemical plant protection products to grapevines also could have played a significant role, with 49 applications recorded in the Slovácko sub-region during the three years preceding sample collection. In other sub-regions, chemical treatments were conducted only 19-26 times. These factors resulted in only trace amounts of AMF being detected in Slovácko. Furthermore, it was demonstrated that AMF positively influenced the phosphorus concentration in the soil and reduced the presence of certain fungal pathogens.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"17"},"PeriodicalIF":3.3,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143567714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synonymization of three species of Rhizophagus based on morphological and molecular evidence and biogeography of Rhizophagus clarus.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-02-28 DOI: 10.1007/s00572-025-01182-y
Sidney Luiz Stürmer, Karl Kemmelmeier, Coline Deveautour, Stephen P Bentivenga, James D Bever
{"title":"Synonymization of three species of Rhizophagus based on morphological and molecular evidence and biogeography of Rhizophagus clarus.","authors":"Sidney Luiz Stürmer, Karl Kemmelmeier, Coline Deveautour, Stephen P Bentivenga, James D Bever","doi":"10.1007/s00572-025-01182-y","DOIUrl":"https://doi.org/10.1007/s00572-025-01182-y","url":null,"abstract":"<p><p>Taxonomy of arbuscular mycorrhizal fungi (Glomeromycota) historically has been based mostly on analyses of spore morphology. Molecular evidence has been widely used in phylogeny since the turn of the century and has contributed to the nomenclature of arbuscular mycorrhizal fungi. Considering that some species were described solely from field collected spores which often are degraded, synonymy amongst described species is likely. Type and living cultures of Rhizophagus clarus and Rhizophagus manihotis, and protologue of Glomus zaozhuangianus were analyzed to compare spore wall structure. Sequences of the large subunit (LSU) of the rDNA gene of living isolates of Rhizophagus clarus and Rhizophagus manihotis also were used to test phylogenetic relationships. A comprehensive biogeography of arbuscular mycorrhizal fungi was used to investigate species distribution according to soil and climate factors. Spore wall structure analysis indicates that the three species are morphologically indistinguishable. Spore color, size, and shape all overlap highly among the three species. The spore wall of each is composed of an outer hyaline mucilaginous layer, a rigid hyaline laminated layer conferring a visible \"halo\" to mature spores, and a third rigid pigmented laminated layer that confers spore color. Phylogenetic analysis shows that living isolates identified as R. manihotis were nested with living isolates of R. clarus, forming a monophyletic clade with 99% bootstrap support. Spores of R. clarus (as amended here) have been recorded in six continents and 31 countries in 10 biogeographical realms. R. clarus was detected most often in soil pH 5.0-6.0, soil P up to 5 mg/dm<sup>3</sup>, and soil organic matter up to 2.5%. Polynomial models indicate that the probability of occurrence of R. clarus is optimized at a temperature of 20<sup>o</sup> C and 2,000 mm precipitation.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"16"},"PeriodicalIF":3.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The synergistic effect of Rhizophagus irregularis and Biochar on the growth of Switchgrass under sodium-saline-alkali stress: insights from soil mechanical property analysis.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-02-27 DOI: 10.1007/s00572-025-01192-w
Yuqiang Wen, Tianle Xu, Wei Chang, Kun Li, Xiaoxu Fan, Yuan Ping, Fuqiang Song
{"title":"The synergistic effect of Rhizophagus irregularis and Biochar on the growth of Switchgrass under sodium-saline-alkali stress: insights from soil mechanical property analysis.","authors":"Yuqiang Wen, Tianle Xu, Wei Chang, Kun Li, Xiaoxu Fan, Yuan Ping, Fuqiang Song","doi":"10.1007/s00572-025-01192-w","DOIUrl":"https://doi.org/10.1007/s00572-025-01192-w","url":null,"abstract":"<p><p>Under saline-alkali stress conditions, inoculation with Rhizophagus irregularis or the application of biochar can both promote plant growth and improve soil physicochemical properties. However, the effects of their combined use on switchgrass growth and soil mechanical properties remain unclear. This study established four treatments: no Ri inoculation and no biochar addition (control, CK), biochar addition alone (BC), Rhizophagus irregularis inoculation alone (Ri), and their combination (RB). The aim was to investigate the effects of these treatments on the biomass, root morphology, and soil mechanical properties of switchgrass under saline-alkali stress. The results showed that compared to the CK treatment, the RB treatment significantly increased the root, stem, leaf, and total biomass of switchgrass by 67.55%, 74.76%, 117.31%, and 82.93%, respectively. Among all treatment groups, RB treatment significantly reduced soil bulk density, soil water-soluble sodium ions (Na<sup>+</sup>), soil exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), while increasing soil porosity. Furthermore, RB treatment significantly improved infiltration rate and shear strength. Compared to the CK treatment, the stable infiltration rate and shear strength under 400 kPa vertical load increased by 70.69% and 22.5 kPa, respectively. In conclusion, the combination of Ri and biochar has the potential to improve soil mechanical properties and increase the biomass of switchgrass under saline-alkali stress.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"15"},"PeriodicalIF":3.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing consistency in arbuscular mycorrhizal trait-based research to improve predictions of function.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-02-26 DOI: 10.1007/s00572-025-01187-7
Pedro M Antunes, Sidney L Stürmer, James D Bever, Pierre-Luc Chagnon, V Bala Chaudhary, Coline Deveautour, Catherine Fahey, Vasilis Kokkoris, Ylva Lekberg, Jeff R Powell, Carlos A Aguilar-Trigueros, Haiyang Zhang
{"title":"Enhancing consistency in arbuscular mycorrhizal trait-based research to improve predictions of function.","authors":"Pedro M Antunes, Sidney L Stürmer, James D Bever, Pierre-Luc Chagnon, V Bala Chaudhary, Coline Deveautour, Catherine Fahey, Vasilis Kokkoris, Ylva Lekberg, Jeff R Powell, Carlos A Aguilar-Trigueros, Haiyang Zhang","doi":"10.1007/s00572-025-01187-7","DOIUrl":"10.1007/s00572-025-01187-7","url":null,"abstract":"<p><p>Arbuscular mycorrhizal (AM) fungi (phylum Glomeromycota) are obligate symbionts with plants influencing plant health, soil a(biotic) processes, and ecosystem functioning. Despite advancements in molecular techniques, understanding the role of AM fungal communities on a(biotic) processes based on AM fungal taxonomy remains challenging. This review advocates for a standardized trait-based framework to elucidate the life-history traits of AM fungi, focusing on their roles in three dimensions: host plants, soil, and AM fungal ecology. We define morphological, physiological, and genetic key traits, explore their functional roles and propose methodologies for their consistent measurement, enabling cross-study comparisons towards improved predictability of ecological function. We aim for this review to lay the groundwork for establishing a baseline of AM fungal trait responses under varying environmental conditions. Furthermore, we emphasize the need to include underrepresented taxa in research and utilize advances in machine learning and microphotography for data standardization.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"14"},"PeriodicalIF":3.3,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intricate phytohormonal orchestration mediates mycorrhizal symbiosis and stress tolerance.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-02-25 DOI: 10.1007/s00572-025-01189-5
Kaushiki N Kandalgaonkar, Vitthal T Barvkar
{"title":"Intricate phytohormonal orchestration mediates mycorrhizal symbiosis and stress tolerance.","authors":"Kaushiki N Kandalgaonkar, Vitthal T Barvkar","doi":"10.1007/s00572-025-01189-5","DOIUrl":"https://doi.org/10.1007/s00572-025-01189-5","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) are an essential symbiotic partner colonizing more than 70% of land plants. In exchange for carbon sources, mycorrhizal association ameliorates plants' growth and yield and enhances stress tolerance and/or resistance. To achieve this symbiosis, plants mediate a series of biomolecular changes, including the regulation of phytohormones. This review focuses on the role of each phytohormone in establishing symbiosis. It encases phytohormone modulation, exogenous application of the hormones, and mutant studies. The review also comments on the plausible phytohormone cross-talk essential for maintaining balanced mycorrhization and preventing fungal parasitism. Finally, we briefly discuss AMF-mediated stress regulation and contribution of phytohormone modulation in plants. We must examine their interplay to understand how phytohormones act species-specific or concentration-dependent manner. The review summarizes the gaps in these studies to improve our understanding of processes underlying plant-AMF symbiosis.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"13"},"PeriodicalIF":3.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of pine ectomycorrhizae following root disturbance.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-02-21 DOI: 10.1007/s00572-025-01190-y
Gavin Kernaghan, Britanie LeFait, Ayesha Hussain
{"title":"Dynamics of pine ectomycorrhizae following root disturbance.","authors":"Gavin Kernaghan, Britanie LeFait, Ayesha Hussain","doi":"10.1007/s00572-025-01190-y","DOIUrl":"https://doi.org/10.1007/s00572-025-01190-y","url":null,"abstract":"<p><p>Ectomycorrhizae (ECM) and their hyphae may account for up to one-third of forest productivity, but we know little about their patterns of decomposition and recruitment. ECM decomposition rates are governed in part by the identity of the symbiont, while the species that colonize new fine roots are determined by a number of abiotic and biotic filters, including the developmental stage of the root system and hyphal network. Sections of forest floor humus were excised from mature pine stands (severing all roots), replaced and randomly sampled over time. Decomposing ECM and ECM forming on newly growing roots were tracked over 15 months by ITS sequencing. ECM were no longer observed on original roots 13 months post-disturbance, while ECM appeared on new roots after 10 months. Individually, the dominant ECM fell into three categories. 1) Cenococcum geophilum decomposed and recruited slowly, 2) Suillus spraguei and Russula spp. decomposed rapidly but exhibited minimal recruitment during the experiment, and 3) Clavulina coralloides and Lactifluus/Lactarius spp. degraded rapidly but also recruited rapidly onto new roots. Our results indicate that rates of ECM decomposition vary among fungal symbionts, and that root severing appears to shift the ECM community to a slightly earlier successional stage. The lack of recruitment of ECM formed by truly early-stage species is likely due to the low level of soil disturbance, which should be advantageous in the context of forest regeneration.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"12"},"PeriodicalIF":3.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paraglomus and Glomus arbuscular mycorrhizal fungi induce the green tea catechin quality index and phosphorus bioavailability in tropical soils.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-02-20 DOI: 10.1007/s00572-025-01185-9
Pei Yuan, Yingzi Wang, Jianwei Peng, Ya Chen, Jinjing Li, Mamdouh A Eissa, Gongwen Luo, Chang Tian
{"title":"Paraglomus and Glomus arbuscular mycorrhizal fungi induce the green tea catechin quality index and phosphorus bioavailability in tropical soils.","authors":"Pei Yuan, Yingzi Wang, Jianwei Peng, Ya Chen, Jinjing Li, Mamdouh A Eissa, Gongwen Luo, Chang Tian","doi":"10.1007/s00572-025-01185-9","DOIUrl":"https://doi.org/10.1007/s00572-025-01185-9","url":null,"abstract":"<p><p>The quality of green tea is influenced by soil microbes in addition to soil conditions and the Camellia sinensis cultivar. Arbuscular mycorrhizal (AM) fungi can significantly improve soil quality and crop productivity; however, the specific AM fungal groups that affect the catechin quality index (CQI) of green tea are not yet clear. In the present study, rhizosphere soil samples, root samples, and fresh tea leaves from six different Camellia sinensis cultivars in Hunan Province, China, were collected. The taxonomic diversity and community composition of AM fungi in the rhizosphere soil and roots were investigated using high-throughput Illumina amplicon sequencing technology, and the mycorrhizal colonization rate was assessed. The two main AM fungal genera in the Camellia sinensis roots and rhizosphere were Paraglomus and Glomus. A higher catechin quality index (HCQI) is correlated with greater accumulation of Paraglomus in the roots of Camellia sinensis. The tea cultivar and the available phosphorus content in the rhizosphere soil significantly affected the mycorrhizal colonization rate and the composition of the AM fungal community within the roots. The mycorrhizal colonization rate affected the catechin composition, consequently influencing the CQI of green tea. Furthermore, fluctuations in the proportional presence of Paraglomus and Glomus within the roots of Camellia sinensis notably affected the CQI. In summary, increased mycorrhizal colonization and increased prevalence of Paraglomus substantially increase the CQI of green tea. These findings have significant implications for the application of AM fungi in the production of high-quality green tea.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"11"},"PeriodicalIF":3.3,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial community in the hyphosphere of an arbuscular mycorrhizal fungus differs from that in the surrounding environment and is influenced by hyphal disruption.
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2025-02-15 DOI: 10.1007/s00572-025-01186-8
Zexing Jin, Shilong Duan, Stéphane Declerck, Lin Zhang
{"title":"Bacterial community in the hyphosphere of an arbuscular mycorrhizal fungus differs from that in the surrounding environment and is influenced by hyphal disruption.","authors":"Zexing Jin, Shilong Duan, Stéphane Declerck, Lin Zhang","doi":"10.1007/s00572-025-01186-8","DOIUrl":"https://doi.org/10.1007/s00572-025-01186-8","url":null,"abstract":"<p><p>Bacterial composition and functions in the hyphosphere of arbuscular mycorrhizal (AM) fungi are complex because AM fungal hyphae transport carbon compounds from plant photosynthesis which feed bacteria and act as signaling molecules. This function is lost when hyphae separate from roots, a common occurrence in soil. However, the impact of such disturbances on hyphal surface bacteria remains unclear. We used in vitro bi-compartmented Petri plates with carrot roots and the AM fungus Rhizophagus irregularis MUCL 43194, separating root and hyphal compartments. Treatments included hyphae connected to roots (+ AM), no hyphae (-AM), and hyphae cut at different times (C3D and C0D, where C3D indicates hyphae cut 3 days before inoculation and C0D indicates hyphae cut on the day of inoculation) subjected to a bacterial suspension extracted from a field soil. Thirteen bacterial phyla were identified, with Streptomyces, Pseudomonas, Rhodococcus, and Cellulomonas dominating. Hyphae increased bacterial ASV relative abundance, notably enriching Actinobacteria ASVs. After 14 days, α-diversity decreased from -AM to C3D, C0D, and + AM, with fewer Bacteroidetes species in + AM compared to -AM. Root-connected hyphae led to deterministic bacterial assembly, while cut hyphae resulted in stochastic assembly. Our findings show that physical disruption of hyphae significantly affects bacterial diversity and may influence ecological functions.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 1","pages":"10"},"PeriodicalIF":3.3,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信