Mycorrhiza最新文献

筛选
英文 中文
Arbuscular mycorrhizal fungal spore communities and co-occurrence networks demonstrate host-specific variation throughout the growing season 丛枝菌根真菌孢子群落和共生网络在整个生长季节显示出宿主特异性差异
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-09-18 DOI: 10.1007/s00572-024-01168-2
Jacob R. Hopkins, James D. Bever
{"title":"Arbuscular mycorrhizal fungal spore communities and co-occurrence networks demonstrate host-specific variation throughout the growing season","authors":"Jacob R. Hopkins, James D. Bever","doi":"10.1007/s00572-024-01168-2","DOIUrl":"https://doi.org/10.1007/s00572-024-01168-2","url":null,"abstract":"<p>Microbial community assembly involves a series of ecological filtering mechanisms that determine the composition of microbial communities. While the importance of both broad and local level factors on microbial communities has been reasonably well studied, this work often is limited to single observations and neglects to consider how communities change over time (i.e., seasonal variation). Because seasonal variation is an important determinant of community assembly and determines the relative importance of community assembly filters, this represents a key knowledge gap. Due to their close associations with seasonal variation in plant growth and fitness, arbuscular mycorrhizal (AM) fungi are useful groups for assessing the importance of seasonal dynamics in microbial community assembly. We tested how seasonal variation (spring vs. summer), plant life history stage (vegetative vs. flowering), and host plant species (<i>Baptisia bracteata</i> var. leucophaea &amp; <i>Andropogon gerardii</i>) influenced AM fungal spore community assembly. AM fungal spore community temporal dynamics were closely linked to plant host species and life history stage. While AM fungal spore communities demonstrated strong turnover between the spring (e.g., higher sporulation) and late summer (e.g., higher diversity), the strength and direction of these changes was modified by host plant species. Here we demonstrate the importance of considering temporal variation in microbial community assembly, and also show how plant-microbe interactions can modify seasonal trends in microbial community dynamics.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The systemic herbicide glyphosate affects the sporulation dynamics of Rhizophagus species more severely than mechanical defoliation or the contact herbicide diquat 系统性除草剂草甘膦对根瘤菌孢子生长动态的影响比机械落叶或接触性除草剂敌草快更为严重
IF 3.9 2区 生物学
Mycorrhiza Pub Date : 2024-09-11 DOI: 10.1007/s00572-024-01166-4
Bérengère Bastogne, Catherine Buysens, Nicolas Schtickzelle, Ismahen Lalaymia, Stéphane Declerck
{"title":"The systemic herbicide glyphosate affects the sporulation dynamics of Rhizophagus species more severely than mechanical defoliation or the contact herbicide diquat","authors":"Bérengère Bastogne, Catherine Buysens, Nicolas Schtickzelle, Ismahen Lalaymia, Stéphane Declerck","doi":"10.1007/s00572-024-01166-4","DOIUrl":"https://doi.org/10.1007/s00572-024-01166-4","url":null,"abstract":"<p>Arbuscular mycorrhizal fungi (AMF) are totally dependent on a suitable host plant for their carbon resources. Here, we investigated under in vitro conditions, the impact of defoliation practices, i.e., mechanical defoliation or chemical defoliation with a contact herbicide (Reglone®, containing the active ingredient diquat) or systemic herbicide (RoundUp®, containing the active ingredient glyphosate), on the dynamics of spore production of <i>Rhizophagus irregularis</i> and <i>Rhizophagus intraradices</i> associated with <i>Solanum tuberosum</i> and/or <i>Medicago truncatula</i>. Glyphosate affected the spore production rate more rapidly and severely than diquat or mechanical defoliation. We hypothesize that this effect was related to disruption of the C metabolism in the whole plant combined with a possible direct effect of glyphosate on the fungus within the roots and/or perhaps in soil via the release of this active ingredient from decaying roots. No glyphosate could be detected in the roots due to technical constraints, while its release from the roots in the medium corresponded to 0.11% of the active ingredient applied to the leaves. The three defoliation practices strongly affected root colonization, compared to the non-defoliated plants. However, the amount of glyphosate released into the medium did not affect spore germination and germ tube growth. These results suggest that the effects of defoliation on the dynamics of spore production are mainly indirect via an impact on the plant, and that the effect is faster and more marked with the glyphosate-formulation, possibly via a direct effect on the fungus in the roots and more unlikely on spore germination.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialized protist communities on mycorrhizal fungal hyphae. 菌根真菌菌丝上的特殊原生生物群落。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2024-09-09 DOI: 10.1007/s00572-024-01167-3
Changfeng Zhang, Stefan Geisen, Roeland L Berendsen, Marcel G A van der Heijden
{"title":"Specialized protist communities on mycorrhizal fungal hyphae.","authors":"Changfeng Zhang, Stefan Geisen, Roeland L Berendsen, Marcel G A van der Heijden","doi":"10.1007/s00572-024-01167-3","DOIUrl":"https://doi.org/10.1007/s00572-024-01167-3","url":null,"abstract":"<p><p>Arbuscular mycorrhizal (AM) fungi not only play a crucial role in acquiring nutrients for plants but also serve as a habitat for soil microbes. Recent studies observed that AM fungal hyphae are colonized by specific bacterial communities. However, so far it has not been explored whether fungal hyphae and mycorrhizal networks also harbor specific communities of protists, a key group of microbes in the soil microbiome. Here, we characterized protist communities in soil in a compartment with plant roots and on hyphae collected from hyphal compartments without plant roots. We detected specific protist communities on fungal hyphae. Fourteen protistan amplicon sequences variants (ASVs) were significantly associated with fungal hyphae, half of which belonged to the Cercozoa group. This research, for the first-time detected specific protist ASVs directly associated with abundant AM fungus hyphae, highlighting the complexity of the hyphal food web.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated influence of Funneliformis mosseae and different plant growth-promoting bacteria on growth, root functional traits, and nutrient acquisition by maize. 菰菌和不同的植物生长促进菌对玉米生长、根部功能特征和养分获取的协调影响
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2024-08-08 DOI: 10.1007/s00572-024-01165-5
Qurat Ul Ain, Hafiz Athar Hussain, Qingwen Zhang, Faiza Maqbool, Muhammad Ahmad, Abdul Mateen, Li Zheng, Asma Imran
{"title":"Coordinated influence of Funneliformis mosseae and different plant growth-promoting bacteria on growth, root functional traits, and nutrient acquisition by maize.","authors":"Qurat Ul Ain, Hafiz Athar Hussain, Qingwen Zhang, Faiza Maqbool, Muhammad Ahmad, Abdul Mateen, Li Zheng, Asma Imran","doi":"10.1007/s00572-024-01165-5","DOIUrl":"https://doi.org/10.1007/s00572-024-01165-5","url":null,"abstract":"<p><p>Rhizospheric interactions among plant roots, arbuscular mycorrhizal fungi, and plant growth-promoting bacteria (PGPB) can enhance plant health by promoting nutrient acquisition and stimulating the plant immune system. This pot experiment, conducted in autoclaved soil, explored the synergistic impacts of the arbuscular mycorrhizal fungus Funneliformis mosseae with four individual bacterial strains, viz.: Cronobacter sp. Rz-7, Serratia sp. 5-D, Pseudomonas sp. ER-20 and Stenotrophomonas sp. RI-4 A on maize growth, root functional traits, root exudates, root colonization, and nutrient uptake. The comprehensive biochemical characterization of these bacterial strains includes assessments of mineral nutrient solubilization, plant hormone production, and drought tolerance. The results showed that all single and interactive treatments of the mycorrhizal fungus and bacterial strains improved maize growth, as compared with the control (no fungus or PGPB). Among single treatments, the application of the mycorrhizal fungus was more effective than the bacterial strains in stimulating maize growth. Within the bacterial treatments, Serratia sp. 5-D and Pseudomonas sp. ER-20 were more effective in enhancing maize growth than Cronobacter sp. Rz-7 and Stenotrophomonas sp. RI-4 A. All bacterial strains were compatible with Funneliformis mosseae to improve root colonization and maize growth. However, the interaction of mycorrhiza and Serratia sp. 5-D (M + 5-D) was the most prominent for maize growth improvement comparatively to all other treatments. We observed that bacterial strains directly enhanced maize growth while indirectly promoting biomass accumulation by facilitating increased mycorrhizal colonization, indicating that these bacteria acted as mycorrhizal helper bacteria.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tribute to Graziella Berta (1948-2024): research milestones and highlights. 向 Graziella Berta(1948-2024 年)致敬:研究里程碑和亮点。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2024-08-01 DOI: 10.1007/s00572-024-01163-7
Guido Lingua, Vivienne Gianinazzi-Pearson
{"title":"A tribute to Graziella Berta (1948-2024): research milestones and highlights.","authors":"Guido Lingua, Vivienne Gianinazzi-Pearson","doi":"10.1007/s00572-024-01163-7","DOIUrl":"https://doi.org/10.1007/s00572-024-01163-7","url":null,"abstract":"<p><p>Graziella Berta, a well-known mycorrhiza researcher, passed away in her home in Torino (Italy) on March 2nd, 2024, at the age of 75. We were both fortunate to know Graziella personally and to greatly appreciate her professionally, by working closely with her in the same research group in Alessandria (GL) or through many collaborative projects over the years (VGP). Here, we recall some of the milestones in her research and particularly the important contribution she has made to knowledge about plant interactions with mycorrhizal fungi and beneficial rhizosphere bacteria.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel epiphytic root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum from the Red Sea. 红海印度洋-太平洋海草 Thalassodendron ciliatum 的新型附生根-真菌共生。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2024-07-29 DOI: 10.1007/s00572-024-01161-9
Martin Vohník, Jiřina Josefiová
{"title":"Novel epiphytic root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum from the Red Sea.","authors":"Martin Vohník, Jiřina Josefiová","doi":"10.1007/s00572-024-01161-9","DOIUrl":"https://doi.org/10.1007/s00572-024-01161-9","url":null,"abstract":"<p><p>Symbioses with fungi are important and ubiquitous on dry land but underexplored in the sea. As yet only one seagrass has been shown to form a specific root-fungus symbiosis that resembles those occurring in terrestrial plants, namely the dominant long-lived Mediterranean species Posidonia oceanica (Alismatales: Posidoniaceae) forming a dark septate (DS) endophytic association with the ascomycete Posidoniomyces atricolor (Pleosporales: Aigialaceae). Using stereomicroscopy, light and scanning electron microscopy, and DNA cloning, here we describe a novel root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum (Alismatales: Cymodoceaceae) from a site in the Gulf of Aqaba in the Red Sea. Similarly to P. oceanica, the mycobiont of T. ciliatum occurs more frequently in thinner roots that engage in nutrient uptake from the seabed and forms extensive hyphal mantles composed of DS hyphae on the root surface. Contrary to P. oceanica, the mycobiont occurs on the roots with root hairs and does not colonize its host intraradically. While the cloning revealed a relatively rich spectrum of fungi, they were mostly parasites or saprobes of uncertain origin and the identity of the mycobiont thus remains unknown. Symbioses of seagrasses with fungi are probably more frequent than previously thought, but their functioning and significance are unknown. Melanin present in DS hyphae slows down their decomposition and so is true for the colonized roots. DS fungi may in this way conserve organic detritus in the seagrasses' rhizosphere, thus contributing to blue carbon sequestration in seagrass meadows.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inter- and intra-specific metal tolerance variation in ectomycorrhizal fungal Suillus species. 外生菌根真菌 Suillus 物种对金属的耐受性在种间和种内的变异。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2024-07-22 DOI: 10.1007/s00572-024-01162-8
Jessica Fletcher, Alexander Smith, Amy Honan, William Leary, Treya Dabney, Sara Branco
{"title":"Inter- and intra-specific metal tolerance variation in ectomycorrhizal fungal Suillus species.","authors":"Jessica Fletcher, Alexander Smith, Amy Honan, William Leary, Treya Dabney, Sara Branco","doi":"10.1007/s00572-024-01162-8","DOIUrl":"https://doi.org/10.1007/s00572-024-01162-8","url":null,"abstract":"<p><p>Soil metal contamination can affect growth, metabolism, and reproduction of organisms, and can lead to death. However, some fungi have evolved metal tolerance and are able to live in contaminated soils. Species in the ectomycorrhizal genus Suillus from Europe and Asia display variation in metal tolerance, yet it is unknown whether this is a widespread trait in the genus and whether it occurs in North America. Here we investigate cadmium (Cd) and zinc (Zn) tolerance in S. brevipes and S. tomentosus isolates collected from sites in the Rocky Mountains of Colorado displaying different metal content. In line with previous findings for other Suillus species, we hypothesized (1) S. brevipes and S. tomentosus to display intra-specific metal tolerance variation, (2) Zn and Cd tolerance to be correlated to soil metal content, and (3) tolerant isolates to show lower metal tissue content compared to sensitive isolates (due to increased metal exclusion). We found ample intra- and inter-specific Zn and Cd tolerance variation in both S. brevipes and S. tomentosus, but no correlation between soil metal content and tolerance. There was a negative correlation between tolerance level and Zn uptake, indicating an exclusion-based Zn tolerance strategy. Sensitive and tolerant isolates showed no difference in Cd accumulation, indicating that Cd tolerance in these species is likely not dependent on exclusion. Our study sets the groundwork for further investigation into the genetic basis of Suillus metal tolerance and whether and how it impacts pine mycorrhizal partners.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil compaction reversed the effect of arbuscular mycorrhizal fungi on soil hydraulic properties. 土壤压实逆转了丛枝菌根真菌对土壤水力特性的影响。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2024-07-01 Epub Date: 2024-05-29 DOI: 10.1007/s00572-024-01153-9
Püschel David, Rydlová Jana, Sudová Radka, Jansa Jan, Bitterlich Michael
{"title":"Soil compaction reversed the effect of arbuscular mycorrhizal fungi on soil hydraulic properties.","authors":"Püschel David, Rydlová Jana, Sudová Radka, Jansa Jan, Bitterlich Michael","doi":"10.1007/s00572-024-01153-9","DOIUrl":"10.1007/s00572-024-01153-9","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) typically provide a wide range of nutritional benefits to their host plants, and their role in plant water uptake, although still controversial, is often cited as one of the hallmarks of this symbiosis. Less attention has been dedicated to other effects relating to water dynamics that the presence of AMF in soils may have. Evidence that AMF can affect soil hydraulic properties is only beginning to emerge. In one of our recent experiments with dwarf tomato plants, we serendipitously found that the arbuscular mycorrhizal fungus (Rhizophagus irregularis 'PH5') can slightly but significantly reduce water holding capacity (WHC) of the substrate (a sand-zeolite-soil mixture). This was further investigated in a subsequent experiment, but there we found exactly the opposite effect as mycorrhizal substrate retained more water than did the non-mycorrhizal substrate. Because the same substrate was used and other conditions were mostly comparable in the two experiments, we explain the contrasting results by different substrate compaction, most likely caused by different pot shapes. It seems that in compacted substrates, AMF may have no effect upon or even decrease the substrates' WHC. On the other hand, the AMF hyphae interweaving the pores of less compacted substrates may increase the capillary movement of water throughout such substrates and cause slightly more water to remain in the pores after the free water has drained. We believe that this phenomenon is worthy of mycorrhizologists' attention and merits further investigation as to the role of AMF in soil hydraulic properties.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes. 揭示不规则根瘤菌(Rhizophagus irregularis)基因型之间头状花序探索性特征的多样性。
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2024-07-01 Epub Date: 2024-06-03 DOI: 10.1007/s00572-024-01154-8
Daquan Sun, Martin Rozmoš, Vasilis Kokkoris, Michala Kotianová, Hana Hršelová, Petra Bukovská, Maede Faghihinia, Jan Jansa
{"title":"Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes.","authors":"Daquan Sun, Martin Rozmoš, Vasilis Kokkoris, Michala Kotianová, Hana Hršelová, Petra Bukovská, Maede Faghihinia, Jan Jansa","doi":"10.1007/s00572-024-01154-8","DOIUrl":"10.1007/s00572-024-01154-8","url":null,"abstract":"<p><p>Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used <sup>15</sup>N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of <sup>15</sup>N to the plants than the passive transfer of <sup>15</sup>N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater <sup>15</sup>N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhizophagus Irregularis regulates flavonoids metabolism in paper mulberry roots under cadmium stress. 无规根虫调节镉胁迫下纸桑根的类黄酮代谢
IF 3.3 2区 生物学
Mycorrhiza Pub Date : 2024-07-01 Epub Date: 2024-06-05 DOI: 10.1007/s00572-024-01155-7
Shuiqing Deng, Lan Pan, Tong Ke, Jingwei Liang, Rongjing Zhang, Hui Chen, Ming Tang, Wentao Hu
{"title":"Rhizophagus Irregularis regulates flavonoids metabolism in paper mulberry roots under cadmium stress.","authors":"Shuiqing Deng, Lan Pan, Tong Ke, Jingwei Liang, Rongjing Zhang, Hui Chen, Ming Tang, Wentao Hu","doi":"10.1007/s00572-024-01155-7","DOIUrl":"10.1007/s00572-024-01155-7","url":null,"abstract":"<p><p>Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信