Nitrogen accumulation accompanies ectomycorrhiza formation in pine germinants the first growing season after wildfire or clearcutting.

IF 3.8 2区 生物学 Q2 MYCOLOGY
Naomi K Yamaoka, Erica E Packard, Melanie D Jones
{"title":"Nitrogen accumulation accompanies ectomycorrhiza formation in pine germinants the first growing season after wildfire or clearcutting.","authors":"Naomi K Yamaoka, Erica E Packard, Melanie D Jones","doi":"10.1007/s00572-025-01229-0","DOIUrl":null,"url":null,"abstract":"<p><p>Early stages of the ectomycorrhizal symbiosis have rarely been studied on seedlings germinating in the field. By collecting lodgepole and ponderosa pine seedlings during their first growing season in recent clearcuts and burned areas, we were able to identify when colonization of pine roots first began, the rate at which ectomycorrhizal fungi colonized new germinants, and how this related to nitrogen nutrition and growth. Pine seedlings were first colonized in July, a month after germination was first observed. As the first seedlings became mycorrhizal, ectomycorrhizal lodgepole pine seedlings contained approximately 40% more nitrogen and > 60% greater biomass compared to uncolonized seedlings collected at the same time. Nitrogen content was 47% higher in mycorrhizal than nonmycorrhizal naturally-regenerating ponderosa pine seedlings. Ascomycetes, with a Pustularia sp. and Wilcoxina spp. most abundant, formed 80% of the ectomycorrhizae. Because all collected seedlings had ectomycorrhizae present on their roots by the end of the season, we concluded that inoculum of ectomycorrhizal fungi, especially of ruderal ascomycetes, was not limiting colonization of seedlings on these severely burned or recently clearcut sites. Our results are consistent with a role for ectomycorrhizal fungi in nitrogen acquisition, even within the first weeks after mycorrhiza formation; however, it is also possible that larger, more nitrogen-replete seedlings became colonized earlier than smaller seedlings. We saw no evidence of nitrogen loss by mycorrhizal pine seedlings as observed in previous studies.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 5","pages":"58"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01229-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Early stages of the ectomycorrhizal symbiosis have rarely been studied on seedlings germinating in the field. By collecting lodgepole and ponderosa pine seedlings during their first growing season in recent clearcuts and burned areas, we were able to identify when colonization of pine roots first began, the rate at which ectomycorrhizal fungi colonized new germinants, and how this related to nitrogen nutrition and growth. Pine seedlings were first colonized in July, a month after germination was first observed. As the first seedlings became mycorrhizal, ectomycorrhizal lodgepole pine seedlings contained approximately 40% more nitrogen and > 60% greater biomass compared to uncolonized seedlings collected at the same time. Nitrogen content was 47% higher in mycorrhizal than nonmycorrhizal naturally-regenerating ponderosa pine seedlings. Ascomycetes, with a Pustularia sp. and Wilcoxina spp. most abundant, formed 80% of the ectomycorrhizae. Because all collected seedlings had ectomycorrhizae present on their roots by the end of the season, we concluded that inoculum of ectomycorrhizal fungi, especially of ruderal ascomycetes, was not limiting colonization of seedlings on these severely burned or recently clearcut sites. Our results are consistent with a role for ectomycorrhizal fungi in nitrogen acquisition, even within the first weeks after mycorrhiza formation; however, it is also possible that larger, more nitrogen-replete seedlings became colonized earlier than smaller seedlings. We saw no evidence of nitrogen loss by mycorrhizal pine seedlings as observed in previous studies.

在森林大火或森林砍伐后的第一个生长季,松苗的外生菌根的形成伴随着氮的积累。
外生菌根共生的早期阶段很少在田间萌发的幼苗上进行研究。通过在最近的砍伐和烧毁地区收集第一个生长季节的黑松和黄松幼苗,我们能够确定松树根系首次定植的时间,外生菌根真菌定植新发芽物的速度,以及这与氮营养和生长的关系。在首次观察到发芽后一个月,即7月,松树幼苗首次定植。当第一批幼苗变成菌根时,与同一时期收集的未定植的幼苗相比,外生菌根的黑松幼苗含氮量增加了约40%,生物量增加了约60%。菌根培养的黄松幼苗含氮量比非菌根培养的黄松幼苗高47%。外生菌根的80%为子囊菌,其中以Pustularia sp.和Wilcoxina sp.数量最多。由于所有收集到的幼苗在季节结束时根部都有外生菌根,我们得出结论,外生菌根真菌,特别是粗子囊菌的接种并没有限制幼苗在这些严重烧伤或最近被砍伐的地方的定植。我们的结果与外生菌根真菌在氮获取中的作用是一致的,甚至在菌根形成后的第一个星期;然而,也有可能是更大、更富氮的幼苗比更小的幼苗更早被定植。我们没有看到在以前的研究中观察到的菌根松幼苗氮损失的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信