{"title":"Exploring arbuscular mycorrhizal colonization in Agave tequilana: Insights into mycorrhizal partnerships of an emerging crop.","authors":"Matthias Johannes Salomon, Rachel Anita Burton","doi":"10.1007/s00572-025-01225-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the arbuscular mycorrhizal (AM) fungi associations of Agave tequilana, an emerging crop with significant commercial potential that is increasingly being grown outside its native distribution in the arid regions of the Americas. A greenhouse experiment was conducted using field-collected soil inoculum from various locations in South Australia to inoculate A. tequilana plus Plantago lanceolata as a comparative model host. Metagenomic sequencing of the colonized roots with AM fungal-specific amplicons assessed the AM fungal community structure. The Shannon alpha diversity was similar between both plant species, and both predominantly associated with the genus Glomus. However, A. tequilana had a narrower AM fungal community compared to P. lanceolata, which was associated with a broader diversity of AM fungi. Beta diversity analysis of the AM fungal community composition revealed that the factor species (agave/plantago) was significant (p = 0.0001), whereas the inoculum location was not (p = 0.29). The association of A. tequilana with AM fungi from the family Acaulosporaceae, as found in Mexican studies, could not be confirmed. These findings suggest a specialized adaptation of A. tequilana to specific AM fungal species, which could have important implications for using AM fungi in sustainable agave production when cultivated outside their native regions.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 5","pages":"52"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01225-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the arbuscular mycorrhizal (AM) fungi associations of Agave tequilana, an emerging crop with significant commercial potential that is increasingly being grown outside its native distribution in the arid regions of the Americas. A greenhouse experiment was conducted using field-collected soil inoculum from various locations in South Australia to inoculate A. tequilana plus Plantago lanceolata as a comparative model host. Metagenomic sequencing of the colonized roots with AM fungal-specific amplicons assessed the AM fungal community structure. The Shannon alpha diversity was similar between both plant species, and both predominantly associated with the genus Glomus. However, A. tequilana had a narrower AM fungal community compared to P. lanceolata, which was associated with a broader diversity of AM fungi. Beta diversity analysis of the AM fungal community composition revealed that the factor species (agave/plantago) was significant (p = 0.0001), whereas the inoculum location was not (p = 0.29). The association of A. tequilana with AM fungi from the family Acaulosporaceae, as found in Mexican studies, could not be confirmed. These findings suggest a specialized adaptation of A. tequilana to specific AM fungal species, which could have important implications for using AM fungi in sustainable agave production when cultivated outside their native regions.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.